
Behavioral Type Inference for
Concurrent Object-Oriented Languages

Cláudio Vasconcelos

Master thesis presentation

NOVA-LINCS and Dep. de Informática, FCT
Universidade NOVA de Lisboa

Advised by Professor António Ravara

November 28, 2016

Problem
Large-scale software systems rely on communication protocols

Mainstream programming languages do not cope with them:
provide (some) data-type safety
fail to give static support to stateful behaviour

Most (static) approaches to code correctness not well suited

Usual safety guarantees not enough:
An application that allows to open and close a file, but not
read or write, is safe but not useful
Liveness is hard to statically verify (sometimes not possible)

Behavioral Type Inference for Concurrent Object-Oriented Languages 2 / 30

Problem
Large-scale software systems rely on communication protocols

Mainstream programming languages do not cope with them:
provide (some) data-type safety
fail to give static support to stateful behaviour

Most (static) approaches to code correctness not well suited

Usual safety guarantees not enough:
An application that allows to open and close a file, but not
read or write, is safe but not useful
Liveness is hard to statically verify (sometimes not possible)

Behavioral Type Inference for Concurrent Object-Oriented Languages 2 / 30

State-of-the-art

Several approaches to analyse code

Deductive proof systems
Model-checkers / Abstract Interpretation
Type systems

We aim at an automatic, decidable, tool, coping with safety and
(weak) liveness properties (like protocol completion)

Behavioral Type Inference for Concurrent Object-Oriented Languages 3 / 30

Our language of choice

The Mool Language: http://gloss.di.fc.ul.pt/mool

Small, rigorously defined, Java-like, and object-oriented
Associates with each class a behavioural type
Types express valid sequences of method calls
Type system ensures statically safe usage of objects’
protocols

Behavioral Type Inference for Concurrent Object-Oriented Languages 4 / 30

http://gloss.di.fc.ul.pt/mool

Our language of choice

We will work with a new version of the language

Aspects where the language was incorrect or too restricting
were revised

Concurrency
Use of null as a value
Shared usages
...

Assertions were added
Boolean expressions on the state of fields and parameters

Behavioral Type Inference for Concurrent Object-Oriented Languages 5 / 30

The problem we address

Observations

Specifying objects intended behaviour as state machines is
natural, but may be demanding and not easy to get right
Stating, for each method, the required and ensured state of
fields and parameters may be easier
Assertions are part of Java since 2006

Question

Can we get behavioural types from code with assertions?

Behavioral Type Inference for Concurrent Object-Oriented Languages 6 / 30

The problem we address

Observations

Specifying objects intended behaviour as state machines is
natural, but may be demanding and not easy to get right
Stating, for each method, the required and ensured state of
fields and parameters may be easier
Assertions are part of Java since 2006

Question

Can we get behavioural types from code with assertions?

Behavioral Type Inference for Concurrent Object-Oriented Languages 6 / 30

The envisaged contribution

Infer, from O.-O. code with assertions, behavioural (class) types
ensuring safe interoperability

A type inference system: given a program

either fails: the code is not well-typed (in the standard sense)
or it may produce a run-time error due to calling methods in
an incorrect order;
or returns a new version of the code with the classes
annotated with behavioural types, ensuring object
interoperability.

Behavioral Type Inference for Concurrent Object-Oriented Languages 7 / 30

The envisaged contribution

Infer, from O.-O. code with assertions, behavioural (class) types
ensuring safe interoperability

A type inference system: given a program

either fails: the code is not well-typed (in the standard sense)

or it may produce a run-time error due to calling methods in
an incorrect order;
or returns a new version of the code with the classes
annotated with behavioural types, ensuring object
interoperability.

Behavioral Type Inference for Concurrent Object-Oriented Languages 7 / 30

The envisaged contribution

Infer, from O.-O. code with assertions, behavioural (class) types
ensuring safe interoperability

A type inference system: given a program

either fails: the code is not well-typed (in the standard sense)
or it may produce a run-time error due to calling methods in
an incorrect order;

or returns a new version of the code with the classes
annotated with behavioural types, ensuring object
interoperability.

Behavioral Type Inference for Concurrent Object-Oriented Languages 7 / 30

The envisaged contribution

Infer, from O.-O. code with assertions, behavioural (class) types
ensuring safe interoperability

A type inference system: given a program

either fails: the code is not well-typed (in the standard sense)
or it may produce a run-time error due to calling methods in
an incorrect order;
or returns a new version of the code with the classes
annotated with behavioural types, ensuring object
interoperability.

Behavioral Type Inference for Concurrent Object-Oriented Languages 7 / 30

Usage inference process

The process is composed by three stages

1 Typestate generation

2 Usage generation
3 Object usage state inference

Behavioral Type Inference for Concurrent Object-Oriented Languages 8 / 30

Usage inference process

The process is composed by three stages

1 Typestate generation
2 Usage generation

3 Object usage state inference

Behavioral Type Inference for Concurrent Object-Oriented Languages 8 / 30

Usage inference process

The process is composed by three stages

1 Typestate generation
2 Usage generation
3 Object usage state inference

Behavioral Type Inference for Concurrent Object-Oriented Languages 8 / 30

Usage inference process

Input example - File class

class F i l e {

i n t l i n e s I n F i l e ; i n t l inesRead ;
boolean closed ; boolean l i n e I n B u f f e r ; boolean i sEo f ;

//@invariant linesRead >= 0 && linesRead <= linesInFile;
//@initial linesRead == 0 && linesInFile == 5

&& !closed && !lineInBuffer && !isEof;
void F i l e () { . . . }

. . .
}

Behavioral Type Inference for Concurrent Object-Oriented Languages 9 / 30

Usage inference process

Input example - File class

class F i l e {

. . .

//@requires linesRead < linesInFile && !closed && lineInBuffer
&& !isEof;

//@ensures linesRead + 1 <= linesInFile
&& !closed && !lineInBuffer && !isEof;

str ing read () { . . . }

. . .
}

Behavioral Type Inference for Concurrent Object-Oriented Languages 9 / 30

Usage inference process

Input example - File class

class F i l e {

. . .

//@requires linesRead <= linesInFile && !closed && !lineInBuffer
&& !isEof;

//@ensures (linesRead == linesInFile -> !lineInBuffer && isEof)
&& !closed;

boolean eof () { . . . }

. . .
}

Behavioral Type Inference for Concurrent Object-Oriented Languages 9 / 30

Usage inference process

Input example - File class

class F i l e {

. . .

//@requires linesRead == linesInFile && isEof && !closed;
//@ensures linesRead == linesInFile && isEof && closed;
void c lose () {

c losed = true ;
}

}

Behavioral Type Inference for Concurrent Object-Oriented Languages 9 / 30

Stage 1 - Typestate generation
Based on the algorithm presented in

G. D. Caso, V. Braberman, D. Garbervetsky, and S. Uchitel.
“Enabledness-based Program Abstractions for Behavior
Validation”. In: ACM Trans. Softw. Eng. Methodol. 22.3 (July
2013), 25:1–25:46. ISSN: 1049-331X

Enabledness-preserving automata extraction from source
code equipped with assertions
We modified the algorithm to apply it in code with
preconditions and postconditions
We then use a SMT solver to perform the validity checks

Behavioral Type Inference for Concurrent Object-Oriented Languages 10 / 30

Stage 1 - Typestate generation

Choice-based transitions

Mool allows transitions to have, at most, two target states,
with these being based on choice

The algorithm allows nondeterministic transitions with
multiple target states

start

r c
eof

eof
Mool depends on the
result of eof to know which
state to transit to

Behavioral Type Inference for Concurrent Object-Oriented Languages 11 / 30

Stage 1 - Typestate generation

Choice-based transitions

Mool allows transitions to have, at most, two target states,
with these being based on choice
The algorithm allows nondeterministic transitions with
multiple target states

start

r c
eof

eof

Mool depends on the
result of eof to know which
state to transit to

Behavioral Type Inference for Concurrent Object-Oriented Languages 11 / 30

Stage 1 - Typestate generation

Choice-based transitions

Mool allows transitions to have, at most, two target states,
with these being based on choice
The algorithm allows nondeterministic transitions with
multiple target states

start

r c
eof

eof
Mool depends on the
result of eof to know which
state to transit to

Behavioral Type Inference for Concurrent Object-Oriented Languages 11 / 30

Stage 1 - Typestate generation

The original algorithm produces the following transition relation

δ(Sa,m) = Sb

Meaning that, when executing the method m in state Sa, the
object transits to state Sb.

In a nondeterministic context it is possible to have the following
transition relation:

(Sa,m,Sb1) ∈ δ

(Sa,m,Sb2) ∈ δ

Where Sb1 and Sb2 are different states.

Behavioral Type Inference for Concurrent Object-Oriented Languages 12 / 30

Stage 1 - Typestate generation

The original algorithm produces the following transition relation

δ(Sa,m) = Sb

Meaning that, when executing the method m in state Sa, the
object transits to state Sb.
In a nondeterministic context it is possible to have the following
transition relation:

(Sa,m,Sb1) ∈ δ

(Sa,m,Sb2) ∈ δ

Where Sb1 and Sb2 are different states.

Behavioral Type Inference for Concurrent Object-Oriented Languages 12 / 30

Stage 1 - Typestate generation
In our version the transition relation is a function, defined as
follows

δ(Sa,m, c) = Sb

Where c is the choice the transition corresponds to.

In the previous nondeterministic example, the transition relation
could be:

δ(Sa,m, false) = Sb1

δ(Sa,m, true) = Sb2

Meaning that, if m returns true the object transits to state Sb2,
otherwise it transits to state Sb1.

Behavioral Type Inference for Concurrent Object-Oriented Languages 13 / 30

Stage 1 - Typestate generation
In our version the transition relation is a function, defined as
follows

δ(Sa,m, c) = Sb

Where c is the choice the transition corresponds to.
In the previous nondeterministic example, the transition relation
could be:

δ(Sa,m, false) = Sb1

δ(Sa,m, true) = Sb2

Meaning that, if m returns true the object transits to state Sb2,
otherwise it transits to state Sb1.

Behavioral Type Inference for Concurrent Object-Oriented Languages 13 / 30

Stage 1 - Typestate generation

Transition relation extension

To do this, the algorithm needs to know which state
corresponds to both true and false branches
The post-condition must specify the object state in both
choices

Behavioral Type Inference for Concurrent Object-Oriented Languages 14 / 30

Stage 1 - Typestate generation

Output example - Typestate of the File class

Q1start

Q3

Q2 Q4

(eof , false)

(eof , true)

(read , _)

(close, _)

Q1 = {eof}

Q3 = {read}

Q2 = {close}

Q4 = {}

Behavioral Type Inference for Concurrent Object-Oriented Languages 15 / 30

Stage 2 - Usage generation

Based on the algorithm presented in

P. Collingbourne and P. H. J. Kelly. “Inference of Session Types
From Control Flow”. In: Electron. Notes Theor. Comput. Sci.
238.6 (June 2010), pp. 15–40. ISSN: 1571-0661.

Session type inference for C
We are only interested in stage three of the algorithm:
Graph Simplification and Translation

Behavioral Type Inference for Concurrent Object-Oriented Languages 16 / 30

Stage 2 - Usage generation

Choice-based transitions

The translation function does not deal with choice-based
transitions
We extend it so that it translates these type of transitions into
variant types

δ(Sa,m, false) = (Sb1)

δ(Sa,m, true) = (Sb2)
=⇒ Sa = {m;< Sb2 + Sb1 >}

Behavioral Type Inference for Concurrent Object-Oriented Languages 17 / 30

Stage 2 - Usage generation

Shared state of usage states

An usage state can be defined as shared or non-shared
We extend the translation function to infer the shared status
of an usage state
An usage state is considered shared if:

Its completely recursive
Sa = {a;Sa + b;Sa}

It only transits to equivalent usage states
Sa = {a;Sa + b;Sb} Sb = {a;Sb + b;Sa}

Behavioral Type Inference for Concurrent Object-Oriented Languages 18 / 30

Stage 2 - Usage generation

Output example - Usage of the File class

usage l i n { F i l e ; Q1 } where
Q1 = l i n { eof ; < Q2 + Q3 >}
Q3 = l i n { read ; Q1 }
Q2 = l i n { c lose ; end } ;

Behavioral Type Inference for Concurrent Object-Oriented Languages 19 / 30

Stage 3 - Object usage state inference

Specifying the initial usage state of fields

Mool offers the possibility of indicating the state of the usage
of a object in its declaration:

class Fi leReader {
. . .
F i l e [Q3] f i l e ;
. . .

}

Behavioral Type Inference for Concurrent Object-Oriented Languages 20 / 30

Stage 3 - Object usage state inference

Specifying the usage state of parameters

Programmers can also define the usage state of parameters:
void Fi leReader (F i l e [Q3] f) {

f i l e = f ;
. . .

}

Behavioral Type Inference for Concurrent Object-Oriented Languages 21 / 30

Stage 3 - Object usage state inference

Specifying the usage state of a returned object

It is also possible to define the usage state of an object
returned by a method:

F i l e [Q3] getFi leToRead () {
f i l e ;

}

Behavioral Type Inference for Concurrent Object-Oriented Languages 22 / 30

Stage 3 - Object usage state inference

Usage state declaration in the context of our work

We do not expect the programmer to know beforehand the
states that will compose the generated usage
But we can expect the programmer to know the state of an
object when initialised

Behavioral Type Inference for Concurrent Object-Oriented Languages 23 / 30

Stage 3 - Object usage state inference

Using preconditions to specify the state of an object

It is possible to express the expected state of the instance
received as a parameter in the precondition of the method:

class Fi leReader {
F i l e f i l e ; . . .

//@invariant counter >= 0;
//@requires f != null && !f.eof();
//@initial counter == 0 && new File() && !isEof;
void Fi leReader (F i l e f) { f i l e = f ; . . . }
. . .

}

Behavioral Type Inference for Concurrent Object-Oriented Languages 24 / 30

Stage 3 - Object usage state inference

Using preconditions to specify the state of an object

It is possible to express the expected state of the instance
received as a parameter in the precondition of the method:

class Fi leReader {
F i l e f i l e ; . . .

//@invariant counter >= 0;
//@requires f != null && !f.eof();
//@initial counter == 0 && new File() && !isEof;
void Fi leReader (F i l e [Q3] f) { f i l e = f ; . . . }

}

Behavioral Type Inference for Concurrent Object-Oriented Languages 24 / 30

Stage 3 - Object usage state inference

Using preconditions to specify the state of an object

It is also possible to know the initial state of an object when it
is initialized:

class Fi leReader {
F i l e [Q3] f i l e ; . . .

//@invariant counter >= 0;
//@requires f != null && !f.eof();
//@initial counter == 0 && new File() && !isEof;
void Fi leReader (F i l e [Q3] f) { file = f; . . . }

}

Behavioral Type Inference for Concurrent Object-Oriented Languages 24 / 30

Stage 3 - Object usage state inference

Using postconditions to specify the state of a returned object

This usage state can be inferred using the method
postcondition to express the expected state of the returned
object:

//@requires !isEof;
//@ensures !isEof && !file.eof();
F i l e getFi leToRead () {

f i l e ;
}

Behavioral Type Inference for Concurrent Object-Oriented Languages 25 / 30

Stage 3 - Object usage state inference

Using postconditions to specify the state of a returned object

This usage state can be inferred using the method
postcondition to express the expected state of the returned
object:

//@requires !isEof;
//@ensures !isEof && !file.eof();
F i l e [Q3] getFi leToRead () {

f i l e ;
}

Behavioral Type Inference for Concurrent Object-Oriented Languages 25 / 30

Stage 3 - Object usage state inference

Algorithm steps

1 Determines the usage state of every parameter using the
preconditions

2 Analyses the code of the method and:
For every initialization, sets the usage state of the initialized variable
with the usage state of the value
For every call, changes the current usage state of the object the
method was called

3 Determines the usage state of the return type using the
postconditions

Behavioral Type Inference for Concurrent Object-Oriented Languages 26 / 30

Conclusion

Work summary

In short, the algorithm does the following:
Generates typestates from the code equipped with assertions
Translates the typestates into usage types
Infers the correct usage state for each declared object

We implemented the algorithm:
http://usinfer.sourceforge.net/

Behavioral Type Inference for Concurrent Object-Oriented Languages 27 / 30

http://usinfer.sourceforge.net/

Conclusion

Work summary

In short, the algorithm does the following:
Generates typestates from the code equipped with assertions
Translates the typestates into usage types
Infers the correct usage state for each declared object

We implemented the algorithm:
http://usinfer.sourceforge.net/

Behavioral Type Inference for Concurrent Object-Oriented Languages 27 / 30

http://usinfer.sourceforge.net/

Conclusion

Assertions

If the assertions are not correct, one of two things might
happen:

The tool fails to infer the usage types
The tool produces usage types that may allow unwanted behaviour
In that case, typechecking the code with such usage may fail, if it
allows erroneous behaviour

Thus, the algorithm can also be used to verify the
correctness of the assertions

Behavioral Type Inference for Concurrent Object-Oriented Languages 28 / 30

Conclusion

Assertions

If the assertions are not correct, one of two things might
happen:

The tool fails to infer the usage types
The tool produces usage types that may allow unwanted behaviour
In that case, typechecking the code with such usage may fail, if it
allows erroneous behaviour

Thus, the algorithm can also be used to verify the
correctness of the assertions

Behavioral Type Inference for Concurrent Object-Oriented Languages 28 / 30

Future work

Correctness

We want to:
State the intended results
Prove the algorithm sound

Assertions

Programming with assertions is also hard
We want to infer them as automatically as possible

Behavioral Type Inference for Concurrent Object-Oriented Languages 29 / 30

Future work

Correctness

We want to:
State the intended results
Prove the algorithm sound

Assertions

Programming with assertions is also hard
We want to infer them as automatically as possible

Behavioral Type Inference for Concurrent Object-Oriented Languages 29 / 30

Thank you

Behavioral Type Inference for Concurrent Object-Oriented Languages 30 / 30

