
Cláudio José Albino de Vasconcelos

Master of Science

Behavioral type inference for concurrent
object-oriented languages

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

Orientador: António Ravara, Professor Auxiliar,
Faculdade de Ciências e Tecnologia
da Universidade Nova de Lisboa

September, 2016

Behavioral type inference for concurrent object-oriented languages

Copyright © Cláudio José Albino de Vasconcelos, Faculdade de Ciências e Tecnologia,

Universidade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “unlthesis” [1] desenvolvido no Dep.
Informática da FCT-NOVA [2]. [1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

Abstract

The widespread use of service-oriented and cloud computing is creating a need for

a communication-centered programming approach and for distributed concurrent soft-

ware systems. Protocols play a central role in the design and development of such systems

but mainstream programming languages still give poor support to ensure protocol com-

patibility. Testing alone is not sufficient to ensure protocol compatibility, so there is a

pressing need for tools to assist in the development of these kind of systems.

Behavioral types is an possible solution to this problem and there is already a great

amount of research on how to integrate these types in programming languages, namely

object-oriented ones. The drawback some of the existing approaches to the use of be-

havioral types on programming languages consist on requiring the developers explicitly

annotate the code with the behavioral types, what constitutes an extra burden to the pro-

grammer. Inference-based approaches would not only help programmers by alleviating

them from such annotations but would also allow to deal with legacy code.

Our goal is to develop a tool that is capable of analyzing source code from programs

written in a subset of Java and, if well typed, produce a new version annotated with its

respective behavioral types, ensuring object interoperability. Concretely, the contribution

is two-fold: The definition of an idealized, yet expressive, Java-like language with behav-

ioral types (building on previous work); the definition of a type-inference system for the

language without behavioral annotations but with pre-conditions and invariants.

Keywords: Behavioral types, object-oriented programming, type systems, concurrency,

distributed systems, typestates, inference, session types

v

Resumo

O uso generalizado de computação centrada em serviços e cloud computing tem vindo

a criar uma necessidade de uma abordagem baseada em programação centrada na comu-

nicação e em sistemas distribuídos de software concorrente. Protocolos de comunicação

desempenham um papel central na conceção e desenvolvimento de tais sistemas mas

as linguagens de programação tradicionais continuam a não dar o suporte necessário

para garantir a compatibilidade entre protocolo. Testar em si só não é suficiente para

garantir a compatibilidade entre protocolos, pelo que existe uma necessidade urgente de

ferramentas para auxiliar no desenvolvimento deste tipo de sistemas .

Tipos comportamentais são uma possível solução para este problema e já existe uma

grande quantidade de trabalho de investigação feito sobre como integrar estes tipos em

linguagens de programação, nomeadamente orientadas a objetos. A desvantagem de al-

gumas das abordagens existentes para o uso de tipos comportamentais em linguagens de

programação consiste na exigência feita aos programadores em anotar explicitamente o

código com os tipos comportamentais, o que constitui uma carga extra para o programa-

dor. Abordagens baseadas em inferência não só ajudam os programadores aliviando-os

de tais anotações, mas também permitiria lidar com legacy code.
O nosso objetivo é desenvolver uma ferramenta capaz de analisar código fonte de

programas escritos num subconjunto do Java e, se bem tipificado, de produzir uma nova

versão anotada com seus respetivos tipos comportamentais, garantindo interoperabili-

dade entre objetos. Concretamente, a contribuição é dupla : A definição de uma versão

idealizada, mas expressiva, de uma linguagem semelhante ao Java com tipos comporta-

mentais (a partir de trabalho anterior); a definição de um sistema de inferência de tipos

para a linguagem sem anotações comportamentais, mas com pré-condições e invariantes.

Palavras-chave: Tipos comportamentais, Programação orientada a objetos, sistemas de

tipos, concorrência, sistemas distribuídos, typestates, inferência, tipos de sessão

vii

Contents

List of Figures xi

Listings xiii

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis outline . 4

2 Related work 5

2.1 Deductive proof systems . 5

2.2 Model checking . 5

2.3 Types and type systems . 6

2.3.1 Type-checking . 6

2.3.2 Type inference . 6

2.4 Behavioural types and type systems . 6

2.4.1 Typestates . 7

2.4.2 Session types . 7

2.5 Session type inference . 8

3 A Revision of the Mool Language 10

3.1 The original Mool language . 11

3.1.1 Minor errors and limitations . 11

3.1.2 Major errors and limitations . 11

3.2 Latest Mool implementation . 14

3.3 Testing the formalization . 18

3.3.1 Racket . 18

3.3.2 PLT Redex . 18

3.4 PLT Redex implementation of the original formalization 18

3.5 The revised Mool language . 20

3.5.1 Revised syntax . 20

3.5.2 Revised operational semantics . 21

3.5.3 Revised type system . 23

3.6 PLT Redex implementation of the revised Mool formalization 29

ix

CONTENTS

4 Behavioural type inference 35

4.1 Mool− . 35

4.2 Example: Blog . 35

4.3 Usage inference algorithm . 38

4.3.1 Stage 1: Typestate generation . 38

4.3.2 Stage 2: Usage generation . 43

4.3.3 Stage 3: Object usage state inference 44

4.4 ML implementation . 46

5 Conclusions 48

5.1 Summary . 48

5.2 Future work . 50

Bibliography 53

A Reduction graphs in Racket 57

B Revised Mool syntax and rules 60

C Algorithm implementation in ML 70

C.1 Algorithm types structures . 70

C.2 Prover . 72

C.3 Stage 1 algorithm . 74

C.4 Stage 2 algorithm . 75

C.5 Stage 3 algorithm . 77

x

List of Figures

1.1 File API usage protocol . 2

3.1 Revised syntax . 22

3.2 Auxiliary definitions and Operations . 23

3.3 Reduction semantics for states . 23

3.4 Revised reduction semantics for statements 24

3.5 Evaluation functions for arithmetic values and expressions 24

3.6 Evaluation functions for boolean values and expressions 25

3.7 Types, Type Definitions and Operations . 30

3.8 Revised typing rules for programs . 31

3.9 Revised typing rules for usages . 31

3.10 Revised typing rules for arithmetic expressions 31

3.11 Revised typing rules for boolean expressions 31

3.12 Revised typing rules for field and variable dereference 32

3.13 Revised typing rules for simple statements . 32

3.14 Revised typing rules for control flow expressions 33

3.15 Revised typing rules for calls . 33

4.1 Mool− syntax . 36

4.2 Admin interaction sequence diagram . 37

4.3 Viewer interaction sequence diagram . 37

4.4 Non-deterministic behaviour a File class . 41

4.5 Behaviour a File class . 42

4.6 Typestate for the Post class . 42

4.7 Typestate for the Viewer class . 42

4.8 Typestate for the Blog class . 42

A.1 PLT-Redex reduction graph example 2 . 57

A.2 PLT-Redex reduction graph example 1 . 58

A.3 PLT-Redex reduction graph example 3 . 59

B.1 Revised syntax . 61

B.2 Auxiliary definitions and Operations . 62

xi

List of Figures

B.3 Reduction semantics for states . 62

B.4 Revised reduction Semantics . 63

B.5 Evaluation functions for arithmetic values and expressions 63

B.6 Evaluation functions for boolean values and expressions 64

B.7 Types, Type Definitions and Operations . 65

B.8 Revised typing rules for programs . 66

B.9 Revised typing rules for usages . 66

B.10 Revised typing rules for values . 66

B.11 Revised typing rules for arithmetic expressions 66

B.12 Revised typing rules for boolean expressions 67

B.13 Revised typing rules for field and variable dereference 67

B.14 Revised typing rules for simple statements . 68

B.15 Revised typing rules for control flow expressions 68

B.16 Typing rules for subtyping . 69

B.17 Revised typing rules for calls . 69

xii

Listings

1.1 Code for the File class . 2

3.1 FileReader subtyping example . 15

3.2 FileReader linear attribution example . 15

3.3 File usage variation . 15

3.4 FileReader spawn example 1 . 16

3.5 FileReader spawn example 2 . 16

3.6 File unsafe usage . 16

3.7 FileReader negated call example 1 . 16

3.8 FileReader negated call example 2 . 17

3.9 FileReader bad usage example 1 . 17

3.10 FileReader bad usage example 2 . 17

3.11 FileReader bad usage example 3 . 17

4.1 Code for the Post class . 38

4.2 Code for the Blog class . 39

4.3 Code for the Viewer class . 40

4.4 Code for the Main class . 41

4.5 Code for the Post class usage . 44

4.6 Code for the Viewer class usage . 44

4.7 Code for the Blog class usage . 44

4.8 Excerpt of V iewer class with field blog without an usage state 44

4.9 Excerpt of V iewer class with field blog annotated with an usage state . . 44

4.10 Constructor of the V iewer class equipped with assertions 45

4.11 Method viewP ost with a return type without an usage state 45

4.12 Method viewP ost with a return type annotated an usage state 45

4.13 Method viewP ost equipped with assertions 46

5.1 Code for the File class with weak assertions 49

5.2 Usage of the File class with weak assertions 50

5.3 Code with incorrect interaction with the File class 50

5.4 Code for the File class with stronger assertions 51

5.5 Usage of the File class with stronger assertions 51

C.1 ML code for the types and structures used by the algorithm 70

C.2 ML code for the prover module . 72

xiii

LISTINGS

C.3 ML code for the first stage of the algorithm 74

C.4 ML code for the second stage of the algorithm 75

C.5 ML code for the third stage of the algorithm 77

xiv

Chapter 1

Introduction

Modern software systems are inherently concurrent and distributed, and there is a ne-

cessity of guaranteeing that these systems are available, secure and reliable. Concurrent

programming alone is already very challenging; developing multi-threaded applications

is not only quite elaborate (or even difficult), but also error-prone due to how hard it is

to reason about their behaviour. Debugging and testing is not enough to ensure these

applications are safe because, as Dijkstra stated, "Program testing can at best show the

presence of errors but never their absence" [12], and ensuring liveness properties requires

demanding approaches since not only they are not decidable they also require algorithms

with high complexity [25]. In a distributed context, these applications evolve into large-

scale systems composed by many components that need to communicate between them

while following protocols to ensure the system behaves correctly since these type of sys-

tems do not have shared memory. Because of this, communication protocols play a central

role in the design and development of these type of systems and so they have created a

necessity for a communication-based programming approach.

It is necessary to develop techniques that helps to create safe and well-behaved sys-

tems, such as language-based tools to provide correctness guarantees, or extensions of

programming languages with constructs to specify the intended behaviour and to ensure

that it is followed. It is important that these techniques allow programmers to test their

systems statically while while they are developing them instead of testing only at the end,

which can bring a lot of unnecessary complexity [13].

While large-scale software systems rely on communication protocols, none of the

mainstream programming languages support them nor offer any type of static support to

stateful behaviour. There are many (static) approaches to guarantee code correctness but

they only focus on on safety properties, which is not enough as the absence of run-time

errors does not imply that the application is well-behaved. Also, liveness properties are

hard, sometimes impossible, to verify statically. Consider, for instance, an API to read

files. Listing 1.1 shows the File class presented as an example in [4] but equipped with

assertions. The assertions in the code suggest an usage protocol such as the one in Figure

1.1: One first opens the file; before reading one should test for (non-)emptiness, and once

1

CHAPTER 1. INTRODUCTION

Listing 1.1: Code for the File class
1 class File {

2

3 int linesInFile; int linesRead;

4 boolean open; boolean closed; boolean lineInBuffer;

5

6 //@ invariant linesRead >= 0 && linesRead ≤ linesInFile;
7

8 //@ requires !open;
9 //@ ensures open && linesRead == 0 && linesInFile == 5 && !closed && !lineInBuffer;;
10 void open(string filename) {...}

11

12 //@ requires open && linesRead < linesInFile && !closed && lineInBuffer;
13 //@ ensures open && linesRead + 1 ≤ linesInFile && !closed && !lineInBuffer;
14 string read() {...}

15

16 //@ requires open && linesRead ≤ linesInFile && !closed && !lineInBuffer;
17 //@ ensures open && (linesRead == linesInFile −> !lineInBuffer) && !closed;
18 boolean eof() {...}

19

20 //@ requires open && linesRead == linesInFile && !closed;
21 //@ ensures open && linesRead == linesInFile && closed;
22 void close() {...}

23 }

{open} {eof }

{read}

{close} {}

open

eof

eof

read

close

Figure 1.1: File API usage protocol

the work is done, one should close the file. Guaranteeing (statically) that the code never

goes wrong does not ensure its "usefulness" because while it can ensure that the client

code does not execute a sequence of instructions that can cause the program to fail, such

as reading a file before opening it, it does not guarantee that it fully follows the usage

protocol required by the API by allowing situations such as the client code not closing the

file at the end. An important (liveness) property is that client code using the API should

always follow its protocol.

Behavioural types [24] are a valid approach to the problem, as behavioural-typed

languages allows programmers to specify usage protocols as types that can be statically

verified by the type system to ensure the usage protocol is well implemented. At the

moment none of the mainstream languages provide official support to behavioural types

but there is an extensive line of research working towards its mainstream use [1].

2

1.1. CONTRIBUTIONS

Assertions are officially supported by Java since 2006 1 and not only there is a lot

of written code with assertions, many programmers already have experience in using

assertions in code and so they may find easier to specify the behaviour of the code by

stating, for each method, the required and ensured state of fields and parameters through

assertions. Also, while specifying behaviour through behavioural types may be more

intuitive and easy the check, type systems are not mature enough to allow programmers

to fully rely on behavioural types to guarantee code correctness. Consider the usage

protocol in Figure 1.1: Type systems can guarantee that the reading operation is executed

after the opening operation but it does not guarantee that the opening operation does,

in fact, open the file, allowing for the read operation to operate on non initialized fields.

With assertions we can specify that after the opening operation the necessary fields must

be initialized. As of now, the properties guaranteed by the type systems and assertions

are complementary.

The aim of our work is to bridge the world of programming in Java with assertions

with the world of behavioural typed programming, in particular in Java. We developed

an algorithm that converts Java with assertions in a form of behavioural types (henceforth

called usage, a textual representation of a finite automata). Usages represent all the

safe sequences of method calls and are (enhanced forms of) class types, checkable at

compile-time. Our work will focus on a small programming language similar to Java that

uses behavioural types in the form of usages, which we refined its type-checking system

to provide enough expressiveness to the language to support the development of more

complex and realistic applications.

To summarize, our approach is the following: given a program written in a subset of

Java, fully annotated with assertions that we take correct and ensure correctness, returns

its usage. The goal is to provide developers with abstractions extracted from the code to

represent its behaviour. Furthermore, these abstractions can be attached to the code and

statically verified.

1.1 Contributions

The contributions of this thesis are:

• An revision of the Mool language, a small object-oriented programming language

that integrates behavioural types in the form of usages. This revision is composed

by (1) an analysis to the formalization of the language where we present a set

of aspects where the language is not well defined or it is too restricting and (2)

a proposal for a new version of its formalization, completed with revised syntax,

operational semantics and type system, that solves those aspects;

1http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html

3

http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html

CHAPTER 1. INTRODUCTION

• A definition of an algorithm that takes a program written in a variation of our

revised version of the Mool language and returns it annotated with usages and a

prototype tool that implements the algorithm.

1.2 Thesis outline

The thesis is structured as follow:

• Chapter 2 presents a state of the art study on behavioural types, more specifically

in the form of session types, and type inference.

• Chapter 3 presents our analysis to the Mool language and a proposal for an updated

version of the language;

• Chapter 4 presents the behavioural type inference algorithm we defined for the

Mool language;

• Chapter 5 summarises the accomplishments of this thesis and and presents our

ideas for future work.

4

Chapter 2

Related work

This chapter presents the state-of-the-art on static code analysis and behavioural types.

Sections 2.1, 2.2 and 2.3 presents, in a general way, the state of the art on techniques

for static analysis of code. Section 2.4 presents a study on behavioural types focusing

on session types and their integration in programming languages, specially in the object-

oriented paradigm. Section 2.5 presents a study on for session type inference, focusing

on the techniques which we will use on our work.

2.1 Deductive proof systems

Deductive proof systems allows to statically guarantee code correctness through the anal-

ysis of code annotated with assertions that describe the specification of the system it

implements, namely its safety properties, which are then proved valid through the use of

theorem provers [16]. The specification of the system through assertions requires an extra

effort from the programmer in analysing and extracting the properties of the system and

then translating them into assertions. Why3 is an example of a platform that allows to

perform deductive proofs on code. It offers the WhyML language, a ML dialect, than can

be used to write code and program annotations and uses a set of external theorem provers

to verify the code. There are a number of projects consisting on platforms for deductive

proofs of programs written in mainstream languages using WhyML as an intermediate

language [17].

2.2 Model checking

First proposed by Clarke and Emerson [7] and by Sifakis and Queille [31], model checking

is a verification technique that consists on analysing a model automatically extracted from

code and validate it by checking if it complies with the specification of the system. The

models are finite-state automata that represent, in an abstract way, the behaviour of the

system and are exhaustively explored while checking if certain properties are satisfied.

5

CHAPTER 2. RELATED WORK

While this approach is automatic, it can take a long time to give an answer and it is not

decidable when dealing with data-intensive systems [2, p. 7 - 18].

2.3 Types and type systems

A type system is an essential component of any typed language because these program-

ming languages rely on them to detect the absence of type-related errors, helping deter-

mine if the system is well behaved. But, for the type system to be effective, its formal-

ization must be correct and compliant to the behaviour we expect from the system [5].

A well formalized type system can bring a lot of benefits to a typed language. Statically

typed languages require the programmer to declare properly each type, which not only

enforces disciplined programming but more importantly helps to provide useful infor-

mation to help detect early some programming errors during typecheking, which can

help the language being more secure, improve the code’s readability, since these typing

declarations can serve as documentation, and contribute to the execution efficiency of the

code [30, p. 4 - 8].

2.3.1 Type-checking

Typechecking is the process of checking a program written in a typed language to ensure

that the program is well typed, i.e., is safe and well behaved. This is done with an

algorithm, called the typechecker, that goes through the program and verifies that the

program is well typed. If the typechecker cannot guarantee that the program is well

typed or detects that the program is ill behaved, the program is considered ill typed [5].

In statically typed languages, typecheckers are embedded into the compiler and the

process of typechecking is done during compile time, allowing the detection of errors

early [30, p. 3].

2.3.2 Type inference

Type inference consists of deducing the type of a term within a given type system based

on type annotations. Like in typechecking, the process of type inference should be static,

i.e., run at compile time [5].

2.4 Behavioural types and type systems

Born from the idea of describing the behaviour of the system through types, behavioural

types are an approach to code correctness that consist on the the specification of inter-

action patterns of processes through expressive type languages which can then be used

to reason about the behaviour of the code. Since behavioural types are essentially types,

these can be used to verify statically if the code is well-behaved using type checking

algorithms. In this context, if the code is proven to be well-typed, it is guaranteed to have

6

2.4. BEHAVIOURAL TYPES AND TYPE SYSTEMS

a consistent communication pattern and so it will never cause a runtime error due to the

interaction between processes [24].

2.4.1 Typestates

Typestates are an extension of the concept of type that makes it possible to define which

operations are allowed in a particular context, helping to detect during compilation time,

particularly during type-checking, unexpected sequences of operations (for example,

reading a file after closing it) [32].

Garcia, Tanter, Wolff and Aldrich introduced the concept of typestate-oriented pro-

gramming [18], which consists on the extension of object-oriented programming with the

notion of typestate. In typestate-oriented programming each state is represented by a

class, with each of these classes having their own representation and methods. In this

context, the class of the object represents its typestate, which can dynamically change dur-

ing runtime. Aldrich also developed the Plaid language [34], a typestate-programming

language that uses these foundations as its core.

2.4.2 Session types

The concept of session was first introduced by Honda et al. [22, 23], and it consists on

structuring the interaction between two or more clients that communicate through the

use of bidirectional channels. Takeuchi, Honda and Kubo were the first to formalize

sessions using type theory in [33], where they present a small programming language

based on the Milner’s π-calculus and its type system based on the concept of interaction

between processes.

There has been a large amount of effort into researching the integration of session

types into mainstream paradigms, namely functional and object-oriented paradigms [1].

Neunauer and Thiemann present in [28] an approach to session type use on Haskell by

encoding session types into the language using its original type system, while preserving

typing. Vasconcelos et al. present in [36] the idea of transferring the concept of session

types from the context of the π-calculus to a multi-threaded functional language that,

unlike [28], extends the typing system with judgments that statically describe dynamic

changes in the types of channels and function types that describe the changes the function

performs on the channels it interacts with. Vasconcelos et al. extended on previous work

in [19], where they present the formal semantics of buffered communication, introducing

linearity to channels.

The idea of integrating session types into object-oriented languages was first proposed

by Dezani-Ciancaglini et al. in [9], which would then be built over with the formalization

the Moose language [10], a simple multi-threaded object-oriented programming language

extended with session-based communication primitives and types. In this work, session

types describe the channel usages, namely the sequence of messages passed through the

channel. Channels can be shared or linear: Once created, the channel starts in a shared

7

CHAPTER 2. RELATED WORK

state until a connection is established, which then it goes to a linear state, meaning that

the channel is live and, dues to its linearity, a message can only be transmitted once. To

achieve type preservation, a live channel can only be used by two threads and a thread

can only have one reference to a single live channel. [10] guarantees that a well-typed

program guarantees the correct and complete execution of the communication protocol

between two threads.

Stoop [11], developed by Dezani-Ciancaglini et al., is an approach to session type

integration in object-oriented languages that, instead of extending the object-oriented

paradigm with session type features, focus on the amalgamation of session types with

the object-oriented paradigm by unifying sessions and methods and basing choices on

the transmitted objects. Like methods, sessions in Stoop are invoked from methods and

its execution starts immediately but, just like sessions as presented in previous work,

concurrently in a different thread. [11] only presents Stoop as a "language kernel" that

concerns only with the amalgamation of object-oriented features with sessions. Stoop

also guarantees type preservation and progress.

Gay et al. presented in [20] a new approach to session type integration in object-

oriented languages where channels are modelled as classes and session types are aggre-

gated to their class definitions and describe the behaviour of each intervenient in the

protocol, more specifically the possible sequence of method calls on an object of the class.

[20] also presents the idea of modularizing sessions types, allowing the implementation

of session types through multiple methods instead of just one. Through static typing

it is possible to guarantee that every sequence of method calls on every non-uniform

object and, consequently, every sequence of messages transmitted by channels follow the

specification described by the session types.

One of the basis of our work will be the Mool language, developed by Campos and Vas-

concelos [3, 4]. Like in [20], the language allows to associate with each class a behavioural

type specifying safe orderings of method calls but in contrast it does not include channels,

leaving method calls as the only method of communication. Another difference between

[20] and Mool is that [20] only deals with linear objects while in Mool objects can evolve

from a linear state to shared one, and so the language is extended with qualifiers for

aliasing control of objects.

2.5 Session type inference

There are several proposals that aim for session-type inference of programs created with-

out session types.

Hüttel et al. presented in [21] an approach to session type inference for the π-calculus

based on constraint generation and solving, but they argue that it should be possible

to adapt the work for other programming languages since these constraints are present

in other languages with binary session types. Our approach is based on propositional

logic formula satisfiability and, while now the formulas are specified by the programmer

8

2.5. SESSION TYPE INFERENCE

through assertions, we expect in the future to generate automatically these formulas

through syntactic analysis of the code.

Uchitel et al. propose a behavioural model approach [6] consisting on a algorithm that

receives the source code of a program written in C, equipped with assertions representing

invariants and requires clauses, and constructs automatically a enabledness-preserving

behaviour model, which is similar to a typestate. These behaviour models are permissive,

meaning that they include every possible operation sequence of the program. In [6] the

authors argue that their technique ensures that the constructed behaviour models are

always permissive independently of the library’s internal state being finite or not.

Collinbourne and Kelly developed a session type inference algorithm for programs

written in C [8]. This algoritm is composed by three stages: The first stage consists on

converting every communication statement in the code to static single use (SSU) form

[27]; In the second stage, a graph describing the session transitions is obtained from the

communication statements in the SSU form of the code; in the third stage, the graph is

translated into a session type.

Our approach to behavioural type inference is based on the techniques in [6, 8], with

some changes necessary to adapt them to the context of our work. These changes are

discussed during the presentation of our usage type inference algorithm in Chapter 4.

9

Chapter 3

A Revision of the Mool Language

This chapter presents an analysis of the Mool language, which is briefly described in

Section 2.4.2. This analysis is a contribution to the development of the language, detecting

bugs not only in the implementation, but also in the formalisation. We also propose

revisions of aspects of the language we find too restrictive 1.

Section 3.1 presents correction proposals. We organise them in two categories: minor

aspects (Section 3.1.1), which have little influence on the language or their correction

is very straightforward; and major aspects in(Section 3.1.2), which heavily influence the

behaviour of the language and are more complex to change.

We complement the analysis of the Mool language formal system with a small review

of the Mool compiler (version 0.3, available in May 2016 from gloss.di.fc.ul.pt/mool/

download). The purpose is to understand if the aspects we presented in Section 3.1 were

solved in the implementation, and, if they were, how the compiler copes with them.

To test our analysis, we implemented the original formalisation of Mool using PLT-

Redex [14], a module available in Racket [15] that allows us to implement and debug

formal systems of programming languages. Section 3.4 presents our implementation and

explains briefly the examples we used to demonstrate how the aspects in Section 3.1 affect

the language.

Section 3.5 consists on our revision proposal for the Mool language. We present a full

formal system, consisting on the revised operational semantics and a type system of the

language, based on the original but with changes that try to solve the aspects identified

in Section 3.1 plus the addition of new features such as constructors.

Again, to test our revision we implemented the revised formalisation using PLT-Redex.

Section 3.6 presents the list of examples used to test this second implementation. Most of

these examples are almost identical to the ones in Section 3.4, but now they are expected

to have a different behaviour, while some are new examples that were used to test our

changes a little further.

Chapter B contains the full syntax, operational semantics and typing rules of our

revised version of Mool.

1For more details: https://arxiv.org/abs/1604.06245

10

gloss.di.fc.ul.pt/mool/download
gloss.di.fc.ul.pt/mool/download
https://arxiv.org/abs/1604.06245

3.1. THE ORIGINAL MOOL LANGUAGE

3.1 The original Mool language

Like said before, the main objective is to understand where Mool can be too restrictive

or even present incorrect behaviour. We did this by not only reviewing the original

definitions [4], but also by implementing the language using PLT Redex and trying to

falsify properties of the system (see Section 3.4). These aspects have been categorised in

major and minor aspects, based on their complexity.

3.1.1 Minor errors and limitations

The following observations are minor errors and limitations found on Mool, i.e., they are

very simple to solve:

1. The evaluation context for while is unnecessary. The evaluation contexts defined in

the syntax of Mool specify that in a while expression the expression e that serves as

the boolean condition must be evaluated before the while expression itself, but the

reduction rule R-While specifies that a while expression should be immediately

reduced to a if− else expression.

2. T-UsageVar returns a new typing environment but it is not clear why the final

environment needs to be be different from the initial.

3. T-Assign restricts assignments to unrestricted variables and fields only, but as-

signment to linear variables can be possible since any case that can risk linearity

can be prevented by a predicate that checks if a variable has a linear type when it

should not (for example, that already happens in rule T-Class where is specified

that all of the class fields should be unrestricted).

4. T-Call specifies that the parameter type should be the same as the method type,

which is unnecessarily restricting.

3.1.2 Major errors and limitations

The following aspects are errors and limitations found on Mool that are more complex to

solve:

1. Subtyping for variant types is not well defined. The correct definition, based on the

sub-typing definition in [20], is as follows:

If 〈u′ +u′′〉 <: u then u = 〈ut +uf 〉 with u′ <: ut and u′′ <: uf

2. Subtyping seems to be unsafe. Consider the following expression:

if(f .eof ()) { f .close(); f alse; } else { f .read(); true; }

11

CHAPTER 3. A REVISION OF THE MOOL LANGUAGE

In this expression, is the file has been fully read then it closes and returns f alse,

informing the client that there is no more lines to read, otherwise it reads a line and

returns true, informing the client that there is still lines to be read. Assume that we

reverse the result output as follow:

if(f .eof ()) { f .close(); true; } else { f .read(); f alse; }

Mool accepts this, but it can cause a runtime error because the client can try to close

an already closed file. In this revision we will not propose a fix for the subtyping

since it is not in the context of our work.

3. The typing rule T-Spawn states that the expression e should have an unrestricted

type, but that is not enough to prevent situations where the occurrence of statements

being executed in different threads can result in the correct execution flow of a

program being disrespected. For example, assuming a File class with the usage

lin{ open : lin{ read : lin{ close : un{ } } } }

where methods open, read and close are all of type unit, the code

f .open(); spawn f .read(); f .close()

which opens the file, creates a separate thread for the reading operation and closes

the file, is wrong because after creating the new thread with the reading operation

it is not possible to predict the next step, so the file can be read or closed. As

defined, the type system will accept this because f .read() has type unit, which is an

unrestricted type, and so the typing rule T-Spawn will accept this expression, as

the following partial derivation shows:

. . .

Γ B f .open() : unit C Γ ′
T-Call

T1

Γ B f .open(); spawn f .read(); f .close() : unit C Γ ′′′
T-Seq

T1

. . .

Γ ′ B f .read() : unit C Γ ′′
T-Call

Γ ′ B spawn f .read() : unit C Γ ′′
T-Spawn

T2

Γ ′ B spawn f .read(); f .close() : unit C Γ ′′
T-Seq

T2

. . .

Γ ′′ B f .close() : unit C Γ ′′′
T-Call

12

3.1. THE ORIGINAL MOOL LANGUAGE

Γ = f : File[lin{ open : lin{ read : lin{ close : un { } } } }]
Γ ′ = f : File[lin{ read : lin{ close : un{ } } }]
Γ ′′ = f : File[close : un{ }]
Γ ′′′ = f : File[un{ }]

4. Usages allow incorrect specifications of sequence of methods calls. Consider the

following usage type:

lin{ read : µRead.un{ eof : 〈close : un{}+ read : Read〉 } } }

This usage describes a behaviour for a File class, where method read depends on

variables initialized by a method open that is implemented as a private method

and is never called, that allows to read a line from a file before opening it but the

typechecker allows it.

5. The type checker does not check if a field is initialised or not, allowing these to be

dereferenced even when they are not.

6. The type system does not have typing rules for self calls. Although the typing rules

for self calls were deliberately omitted from [4], they are essential since in case of

recursion, the type system will not terminate the program evaluation. For instance,

the method run of the class Seller of the example presented in Chapter 2 of [4] is

an example of a program that contains a self call that causes the type checker to go

into an infinite loop.

7. Private methods are not evaluated since the type system, as defined, only checks

methods in the class usage, which the system description considers public, and self

calls are not included in the type system.

8. Typing rules for the control flow expressions with method calls as conditions are

not applied when the method call is preceded of a negation, like

if(!f .eof ()) { f .read() } else { f .close() }

, treating these calls as regular expressions and so it does not operate the necessary

usage changes.

9. The language formalisation does not allow unrestricted classes, i.e., classes without

usages.

10. null cannot be used as a value, not allowing the programmer to set objects to null or

check if they are null.

11. An usage can go from an unrestricted state into a different state. According to the

system description, an usage cannot go from an unrestricted state into a linear state.

13

CHAPTER 3. A REVISION OF THE MOOL LANGUAGE

lin{ open : µRead.un{ eof : 〈close : un{ }+ read : Read〉 } }

This usage, presented in the configuration of the core language, is a slightly mod-

ified usage to the File class of the example presented in [4]. The type system, as

defined, will accept this usage but it clearly represents a situation where the usage

goes from unrestricted to linear since when executing the method open the usage

goes from linear to unrestricted and when executing the method eof the usage goes

back to being linear.

Although, the same concerns are valid when an usage is composed by several unre-

stricted states and it transits between unrestricted states. Consider a variation of the

FileReader class that hosts a file whose reading access can be blocked or unblocked.

A possible usage would be:

lin{ open : µBlocked.un{ unblock :

µUnblocked.un{ block;Blocked + read :Unblocked } } }

Consider also a situation where an instance of this FileReader class, in stateUnblocked,

is shared between two clients. Since the usage allows concurrent interaction with

the instance, it is possible for one client to execute read and the other client to ex-

ecute block at the same time and the block operation terminates before the read

operation. The client that is trying to read will do it while the usage is in state

Blocked, which is not the expected behaviour.

When in an unrestricted state, not only it must no return to a linear state it also

must only go to the same state or to an equivalent state (i.e., a state with the exact

same actions), like the following example:

lin{ open : µBlocked.un{ push : µUnblocked.un{ push : Blocked } } }

Although the original definition [4] lacked the ability to declare local variables, it was

mentioned that the implementation of Mool at the time had allowed it, so this aspect was

omitted from this list.

3.2 Latest Mool implementation

The work developed and presented in the following sections is based on the Mool lan-

guage presented in [4], but we also reviewed the current Mool implementation available
2 to check if the aspects noted in Sections 3.1.1 and 3.1.2 still remain or not and try to

understand how the language copes with those aspects. The examples used in this section

are based on the FileAll.mool example.

2The latest Mool implementation is available at gloss.di.fc.ul.pt/tryit/Mool

14

gloss.di.fc.ul.pt/tryit/Mool

3.2. LATEST MOOL IMPLEMENTATION

To check if the subtyping in the current version is still unsafe, consider the following

code:

Listing 3.1: FileReader subtyping example

1 if(f.eof()) {

2 f.close();

3 true;

4 } else {

5 s = s ++ f.read();

6 false;

7 }

While using this code as the body of the method next of the FileReader class, the

compiler accepts it but running it will cause an infinite loop, which not only is a runtime

error, it goes against the behaviour specified by the usage since the interaction with the

file should be terminated after closing it, but in this example the FileReader will execute

the methods eof and close. This proves that subtyping is still unsafe.

The compiler for the current Mool implementation checks if all of class fields are

initialised, even if they are not used, instead of waiting for a runtime error, showing that

the problem presented in item 6 of Section 3.1.2 seems to be fixed. The compiler also

allows to assign values of linear type to variables, showing that the restriction mentioned

in item 3 of Section 3.1.1 was dropped, allowing code like this:

Listing 3.2: FileReader linear attribution example

1 FileReader f; f = new FileReader();

2 f.open();

3

4 FileReader f2; f2 = new FileReader();

5 f2.open();

6

7 f = f2;

Moreover, it is possible to observe two aspects of the spawn construct: Mool does not

allow e to be a sequential composition (it must only be a single expression) and not only

it must be a method call, it must consume that variable’s usage. This last aspect hints that

the rule T-Spawn checks if all variables in the typing environment are unrestricted after

executing e. Using the example presented in item 2 of Section 3.1.2, with a class File with

the following usage:

Listing 3.3: File usage variation

1 class File {

2 usage lin{open; Read} where

3 Read = lin{read ; Close}

4 Close = lin{close ; end};

5 ...

6 }

15

CHAPTER 3. A REVISION OF THE MOOL LANGUAGE

The following code, which is identical to the one from the example, will not compile,

with the compiler saying that it expected f to be null in the third line :

Listing 3.4: FileReader spawn example 1

1 File f; f = new File();

2 f.open();

3 spawn f.read();

4 f.close();

However, the following code will compile, because the method close finalises the

consumption of f ’s usage:

Listing 3.5: FileReader spawn example 2

1 File f; f = new File();

2 f.open();

3 f.read();

4 spawn f.close();

About the unsafe sequence of calls in item 4 of section 3.1.2, consider the following

example:

Listing 3.6: File unsafe usage

1 class File {

2 usage lin{read; Read} where

3 Read = lin{eof;

4 <lin{close; end} + lin{read; Read}>};

5 }

Replacing the original usage of the FileAll.mool example with the one presented

above will result in the program entering an infinite loop, due to the fact that the method

open is never called, meaning that both variables linesRead and linesInFile are never

explicitly initialized and so both are initialized with the default value which is 0. It is

valid to assume that, while the current version of Mool checks if a variable is initialized

in the code, it seems to not check if that initialization happens during the execution of

the program, leading to these type of situations.

About the use of negated calls as conditions in control flow expressions, the current

compiler still has this limitation. The following example will not compile, saying that the

method read must be called on a control flow expression:

Listing 3.7: FileReader negated call example 1

1 if(!f.eof()) {

2 s = s ++ f.read();

3 true;

4 } else {

5 f.close();

6 false;

7 }

16

3.2. LATEST MOOL IMPLEMENTATION

The message given by the compiler is not very clear since the method read is being

called inside a control flow expression but the reason for this error is due to the fact that,

during the type-checking process, the rule T-If is applied instead of the rule T-IfV, and

it does not operate the necessary changes to the usage of the field f so that method read

is available to be called inside the first branch and the method close inside the second.

Another example is the following code where a while expression is used but the compiler

does not accept the code for the same reason as the previous example:

Listing 3.8: FileReader negated call example 2

1 while(!f.eof()) {

2 s = f.read() ++ s;

3 }

The current compiler allows classes to be unrestricted, as shown by the example

P etitionAll.mool which has unrestricted classes such as Main and P etitionServer.

Furthermore, the current compiler does not allow an usage to go from unrestricted to

linear. The following example will not compile:

Listing 3.9: FileReader bad usage example 1

1 class File {

2 usage lin{open; Read} where

3 Read = un{eof;

4 <lin{close; end} + lin{read; Read}>};

5 ...

6 }

Furthermore, the current compiler does not allow an usage to go from unrestricted to

linear. The following example will not compile:

Listing 3.10: FileReader bad usage example 2

1 class File {

2 usage lin{open; Read} where

3 Read = un{eof;

4 <lin{close; end} + lin{read; Read}>};

5 ...

6 }

But the compiler can accept an usage that goes from an unrestricted state to another

different unrestricted state, like the following one:

Listing 3.11: FileReader bad usage example 3

1 class FileReader {

2 usage lin{open; Blocked} where

3 Blocked = un{unblock; Unblocked}

4 Unblocked = un{read; Unblocked + block; Blocked};

5 ...

6 }

17

CHAPTER 3. A REVISION OF THE MOOL LANGUAGE

3.3 Testing the formalization

Testing the formalization can be helpful to confirm the issues we presented in Section 3.1.

Since producing derivations of executions or of typing is tedious and error-prone, imple-

menting the reduction rules and the type system is crucial to avoid the above mentioned

difficulties but may be very time consuming.

To test the reduction rules and the type system of Mool we use the Racket language,

a programming language that supports other programming languages, more specifically

its module PLT-Redex.

3.3.1 Racket

Racket is a programming language in the Lisp family, meaning that while it can be used to

create solutions like any conventional programming language, it also allows a language-

oriented programming, i.e., allows creating new programming languages. To support

this feature, Racket provides building blocks for protection mechanisms, which allows

the programmers to protect individual components of the language from their clients,

and the internalization of extra-linguistic mechanisms, such as project contexts and the

delegation of program execution and inspection to external agents, by converting them

into linguistic constructs, preventing programmers to resort to mechanism outside Racket

[15].

3.3.2 PLT Redex

PLT Redex is a domain-specific language embedded in Racket that allows programmers to

formalize and debug programming languages. The modeling of a programming language

in Redex is done by writing down the grammar, reductions of the language along with

necessary metafunctions. Since Redex is embedded in Racket, programming in Redex is

just like programming in Racket, with all of the features and tools available for Racket be-

ing also available for Redex, including DrRacket, a integrated development environment

for Racket. One of the most interesting advantages of using DrRacket is the automati-

cally generated reduction graphs that allows programmers to visualize reductions step

by step (examples presented in Section A). Redex also has other methods of testing, such

as pattern matcher (for grammar testing) and judgment-form evaluation (which we use

to test the type system) [14, 26].

3.4 PLT Redex implementation of the original formalization

We implemented Mool as presented in [4] using PLT Redex 3. Due to the syntax of Racket,

we had to make some modifications on the syntax of Mool, such as:

3Available at https://sourceforge.net/p/mool-plt-redex/code/ci/master/tree/mool1.rkt

18

https://sourceforge.net/p/mool-plt-redex/code/ci/master/tree/mool1.rkt

3.4. PLT REDEX IMPLEMENTATION OF THE ORIGINAL FORMALIZATION

• Every expression must be in parenthesis.

• ; is reserved by Racket, so it cannot be used to separate expressions.

• . is also reserved by Racket, so it was replaced by ->.

• To help implementing the type system, the usage variables X were replaced by !X

so they could be distinguished from regular variables.

• A new construct, getref, was added to the runtime syntax. This new construct

returns the last object identifier created so it can be assigned to a field.

• In the runtime syntax used by the type system, nonterminals u and D were added

to e since there must be only one domain which, in this case, is e.

In addition to the language implementation, the code also contains a few examples to

show some of the problems noted in Section 3.1.2. In order to implement more elaborate

examples, some other changes were made:

• Items 1, 2 and 4 of Section 3.1.1 are already solved in the implementation.

• A typing rule for self calls was added. It is the same as T-Call but it does not

change the usage, as the system description specifies.

• Arithmetic and boolean expressions were implemented.

Finally, since this does not exist in this version, the object identifier 0 was reserved to

represent this, so every class field access and self call are done in 0. The examples are the

following:

R-01 Implementation of the File example presented in [4], with an modification on how

the program checks if it has reached the end of the file, due to the limitation pre-

sented in item 7 of section 3.1.2. This example serves to test the operational seman-

tics of Mool and when running it the reduction graph of the program’s reduction

will be shown.

T-01 Typing example of the File example. When run the type system should be able to

check the whole program with success.

T-02 Typing example that implements the situation expressed in item 2 of Section 3.1.2.

The type checker verifies successfully when it should not.

T-03 Implementation of the example presented in item 3 of Section 3.1.2. The type

checker evaluates the program successfully even though it is not desirable to have

a situation where the file can be closed before being read.

19

CHAPTER 3. A REVISION OF THE MOOL LANGUAGE

T-04 Same thing as T-01 but the fields f from the FileReader class and from the Main

class are not initialised, while both are dereferenced as in T-01. The program is

evaluated successfully, allowing both fields to be dereferenced even though they are

not initialised.

T-05 Same thing as T-01 but in the usage of the File class the method open is replaced by

the method read, same as the usage presented in item 4 of Section 3.1.2. The usage

allows to read the file without opening it but the typechecker verifies the program

successfully.

T-06 A variation of the File example where the body of the method count is changed to

true. The return type of the method is unit but the body of the method is of type

boolean and the type checker verifies the program successfully since the body of the

method is not verified, only its signature;

T-07 Implementation of the File and FileReader classes as presented in [4], including

the using of a negated method call as a condition for a control flow expression

in method next of FileReader. This example serves to demonstrate the limitation

presented in item 8 of Section 3.1.2 and it should fail.

T-08 A variation of the File and FileReader classes, where now the method next of

FileReader reads the whole file at once. This example is to demonstrate again

the limitation presented in item 8 of section 3.1.2 with the same result, but now in

a while expression.

T-09 Another typing example that shows that the type system allows an usage to go from

unrestricted to linear. This program only contains one class, File, but its usage is

the same as the first example given in item 11 of Section 3.1.2.

T-10 A simplistic version of the FileReader where the methods do not do anything but

the usage, which is the same as the second usage presented in item 11 of Section

3.1.2, is composed by two different unrestricted states and they change between

them. This should not be allowed but the type checker allows it.

3.5 The revised Mool language

This section presents our revision of the Mool language that tries to solve the problems

mentioned in Sections 3.1.1 and 3.1.2. Some of the modifications are based on the obser-

vations made in Section 3.2.

3.5.1 Revised syntax

Figure B.1 shows a modified syntax for the Mool language. This revised syntax contains

the following new/changed elements:

20

3.5. THE REVISED MOOL LANGUAGE

1. Arithmetic and boolean expressions, represented by the nonterminals a and b re-

spectively.

2. A new nonterminal r for value references, which contains local variables d and this

(to help solving the problems noted in items 5 and 6 in Section 3.1.2).

3. Expressions e contain now only values and expressions, including calls, and put the

rest of the constructs in a new nonterminal s that represents statements.

4. Constructs g d = e and d = e to s to allow local variable declaration and assignment.

5. Since we want to add the concept of constructor in the language, we modified the

construct new C() to new C(e), allowing to pass parameters to the constructor.

6. We divided types into two nonterminals, g and t. g contains types that can be used

to declare fields and variables, while t contains every type in g plus every other type

such as and null

7. We divided the usages into two nonterminals, u and z. u contains the usage con-

structs that can be used right at the beginning of the usage while z contains the

usage constructs used during compile time. In the runtime syntax we added z to u

to avoid too many changes to the typing rules.

8. In the nonterminal u we added ε to indicate that it is possible to not define an usage,

making the class an unrestricted class.

9. The term o, which are objects identifiers, is moved from the user syntax for the

runtime syntax.

10. In the runtime syntax, a new type of value, null, is added and it is used to represent

values for non initialised objects, and a new type C[u; ~F], where ~F are mappings

from fields that are initialised to types, is added to solve the problems in items 4

and 5 of Section 3.1.2.

11. The evaluation context while E e is removed for the reasons stated in item 1 of

Section 3.1.1.

3.5.2 Revised operational semantics

Figure B.4 shows the modified reduction rules for this revised version of Mool. The rules

differ from the original ones, as we add a new environment, local, for the local variables.

We modified the rule R-New so that it reduces to a sequential composition with the

body of the constructor and the created object identifier.

We also add the new rules R-NewVar and R-AssignVar which are for local vari-

able declaration and assignment.

21

CHAPTER 3. A REVISION OF THE MOOL LANGUAGE

User Syntax

(class declarations) D ::= class C {u; ~F; ~M}
(field declaration) F ::= g f

(method declarations) M ::= y t m(t′ x) {e}
(method qualifiers) y ::= ε | sync

(values) v ::= unit | n | true | false | null

(local value references) r ::= d | this

(global value references) w ::= r | r.f
(calls) c ::= new C(e) | r.m(e) | r.f .m(e)

(arithmetic operations) a ::= n | w | c | a+ a | a− a
| a ∗ a | a/a

(boolean operations) b ::= true | false | w | c | a == a | a ! = a

| a <= a | a >= a | a < a | a > a
| b && b | b || b | !b

(expressions) e ::= v | a | b
| c | w

(statements) s ::= e | s;s′

| r.f = e | g d = e | d = e

| if (b) s′ else s′′ | while (b){s′}
| spawn{s}

(types) t ::= void | g | null

(declarable types) g ::= int | bool | C[z]

(class usages) u ::= ε | q{mi ;zi }i∈I | µX.u
(usages) z ::= u | 〈u +u〉 | X

(usage types) q ::= un | lin

Runtime Syntax

(values) v ::= . . . | o
(value references) r ::= . . . | o

(class usages) u ::= . . . | z

(types) t ::= . . . | C[z; ~F]

(object records) R ::= (C,u,
−−−−−→
f = v , l)

(field value map) l ::= 0 | 1

(heap) h ::= ∅ | h,o = R

(evaluation context) E ::= [−] | E;s | o.f = E | o.m(E) | o.f .m(E)

| if (E) s else s′

(States) S ::= (h, local, s1 | . . . | sn)

Figure 3.1: Revised syntax

22

3.5. THE REVISED MOOL LANGUAGE

Object Record and Heap Operations

〈C,u, ~V 〉.f def= ~V (f) 〈C,u, ~V 〉.usage
def= u

〈C,u, ~V 〉.class
def= C

Operations for values and types

lin(v) def=

tt if v = o∧ h(v).usage = 〈u′ +u′′〉
tt if v = o∧ h(v).usage = lin{mi ;zi }i∈I
ff otherwise

un(v) def=

tt if v = unit

tt if v = n
tt if v = true

tt if v = false

tt if v = o∧ h(v).usage = un{mi ;zi }i∈I
ff otherwise

Class Definition Operations

C.methods
def=
−−−−−−−→
M,eval where class C {u; ~F; ~M} ∈ ~D and eval ∈ {0,1}

C.fields
def= ~F where class C {u; ~F; ~M} ∈ ~D

C.usage
def= u where class C {u; ~F; ~M} ∈ ~D

Figure 3.2: Auxiliary definitions and Operations

R-Context

(h, local, s1 | . . . | s | . . . | sn) −→ (h′ , local′ , s1 | . . . | s′ | . . . | sn)

(h, local, s1 | . . . | E[s] | . . . | sn) −→ (h′ , local′ , s1 | . . . | E[s′] | . . . | sn)

R-Spawn (h, local, s1 | . . . | E[spawn{s}] | . . . | sn) −→ (h, local, s1 | . . . | E[unit] | . . . | sn)

Figure 3.3: Reduction semantics for states

The rule R-AssignFieldNull, allows to assign null values to fields, removing them

from the object’s record.

Figures B.5 and B.6 show the evaluation functions for the arithmetic and boolean

expressions. These functions, based on the ones presented in [29], receive as arguments

an expression and both the class field and local variable environment.

3.5.3 Revised type system

In this section we present a new set of typing rules. We omit the unchanged rules with

respect to the original system [4].

Figure B.8 shows the proposed typing rules for programs:

1. Rule T-Class is a modified version of the rule with the same name that has a

new premise that checks if the class usage is correct, i.e., it does not go from an

unrestricted state to a linear one at any point.

Moreover, evaluation of the usage has an object C[u;∅] for input, with no declared

fields, and a object C[u′; ~F] for output, forcing the method-level scope of the system.

23

CHAPTER 3. A REVISION OF THE MOOL LANGUAGE

R-UnField

h(o).f = v un(v,h)

(h, local,o.f) −→ (h, local,v)
R-LinField

h(o).f = v lin(v,h)

(h, local,o.f) −→ (h{o.f 7→ null}, local,v)

R-UnVar

h(d) = v un(v,h)

(h, local,d) −→ (h, local,v)
R-LinVar

h(d) = v lin(v,h)

(h, local,d) −→ (h{d 7→ null}, local,v)

R-Seq (h, local,v;s) −→ (h, local, s) R-NewVar (h, local,g d = v) −→ (h, local{d 7→ v},unit)

R-AssignVar (h, local,d = v) −→ (h, local{d 7→ v},unit)

R-AssignField

v , null

(h, local,o.f = v) −→ (h{o.f 7→ v}, local,unit)

R-AssignFieldNull

v = null

(h, local,o.f = v) −→ (h \ o.f , local,unit)

R-New

o fresh (_ C(_ x) {s},_) ∈ C.methods C.fields =
−−→
t f C.usage = u

(h, local,new C(v)) −→ ((h,o = 〈C,u,
−−−−−−−→
f = null 〉), local, s{o/this}{v/x};o)

R-Call

(_ m(_ x) {s},_) ∈ (h(o).class).methods

(h, local,o.m(v)) −→ (h, local, s{o/this}{v/x})

R-FieldCall

(_ m(_ x) {s},_) ∈ (h(o).f .class).methods

(h,∅, o.f .m(v)) −→ (h,∅, s{o/this}{v/x})

R-While (h, local,while (b){s}) −→ (h, local, if (b) (s;while (b){s}) else unit)

R-IfTrue (h, local, if (true) s′ else s′′) −→ (h, local, s′)

R-IfFalse (h, local, if (false) s′ else s′′) −→ (h, local, s′′)

Figure 3.4: Revised reduction semantics for statements

N(n) = n A(n,h, local) = N(n)

A(o.f ,h, local) = h(o).f A(d,h, local) = local(d)

A(a1 + a2,h, local) = A(a1,h, local) + A(a2,h, local)

A(a1 − a2,h, local) = A(a1,h, local)−A(a2,h, local)

A(a1 ∗ a2,h, local) = A(a1,h, local) ∗A(a2,h, local)

A(a1 / a2,h, local) = A(a1,h, local) / A(a2,h, local)

Figure 3.5: Evaluation functions for arithmetic values and expressions

24

3.5. THE REVISED MOOL LANGUAGE

B(true,h, local) = true B(false,h, local) = false

B(o.f ,h, local) = h(o).f B(d,h, local) = local(d)

B(a1 == a2,h, local) =

true A(a1,h, local) = A(a2,h, local)
false A(a1,h, local) ,A(a2,h, local)

B(a1! = a2,h, local) =

true A(a1,h, local) ,A(a2,h, local)
false A(a1,h, local) = A(a2,h, local)

B(a1 < a2,h, local) =

true A(a1,h, local) <A(a2,h, local)
false A(a1,h, local) >= A(a2,h, local)

B(a1 < a2,h, local) =

true A(a1,h, local) <A(a2,h, local)
false A(a1,h, local) <= A(a2,h, local)

B(a1 <= a2,h, local) =

true A(a1,h, local) <= A(a2,h, local)
false A(a1,h, local) >A(a2,h, local)

B(a1 >= a2,h, local) =

true A(a1,h, local) >= A(a2,h, local)
false A(a1,h, local) <A(a2,h, local)

B(b1 && b2,h, local) =

true B(b1,h, local) = true∧ (b2,h, local) = true

false otherwise

B(b1 || b2,h, local) =

true B(b1,h, local) = true∨ (b2,h, local) = true

false otherwise

B(!b,h, local) =

true B(b,h, local) = false

false B(b,h, local) = true

Figure 3.6: Evaluation functions for boolean values and expressions

In the end it checks if all fields in ~F are unrestricted.

2. Rule T-UnClass is for unrestricted classes and, instead of verifying the usage, it

verifies all of the methods of the class.

We assume that in unrestricted classes every method is independent, i.e., the changes

it introduces to the state of the object do not affect other methods (e.g. initialised

fields), so every method is verified using the same typing environments.

Figure B.9 shows the proposed typing rules for usages:

1. Rule T-BranchEnd is a variation of T-Branch that is applicable when a usage

branch terminates and so it does only evaluate the method, not the next usage

(because there is none).

25

CHAPTER 3. A REVISION OF THE MOOL LANGUAGE

2. Rule T-UsageVar returns the same typing environment mapped to the usage

variable, reflecting the observation made in the item 2 of 3.1.1.

Figures B.11 and B.12 show the typing rules for the arithmetic and boolean expres-

sions. While the syntax itself already enforces the correct types, we need these rules

because the operands can change the usage, e.g., a call made on a field as an operand.

Figure B.13 shows the proposed typing rules for field and variable dereference, where

we added a new rule, T-NullField, for dereference of fields that have not initialized.

Figure B.14 shows the proposed typing rules for simple statements:

1. Two new rules, T-NewVar and T-AssignVar, for local variable declaration and

assignment respectively, are added so the type checker can evaluate local variable

declarations.

Both T-AssignVar and T-AssignField allow linear type value assignment, solv-

ing the limitation in item 3 of Section 3.1.1.

2. The rule T-Spawn is modified based on the conclusions presented in Section 3.2,

making the type checker checking that:

a) all variables modified in s are unrestricted; and

b) in case of variables that are objects, the usage is fully consumed and therefore

cannot be called in any other expression outside the spawn;

c) instead of checking if s has unrestricted type, it allows expressions other than

method calls and it also allows s to be a sequential composition.

Figure B.15 shows the proposed typing rules for control flow expressions:

1. Rules T-IfCall and T-WhileCall are similar to the original rules T-IfV and

T-WhileV, but we extended them so they can be applied to method calls made on

local variables as the conditional expressions for these control flow expressions.

Both these rules are replicated for unrestricted classes through rules T-UnIfCall

and T-UnWhileCall, with the difference being that there is no usage modifica-

tion because there is no usage, so they are essentially the rules T-If and T-While

but instead of having a value as a condition they have a call on a object of a unre-

stricted class.

2. To solve the error in item 7 in section 3.1.2 we added the rules T-IfNotCall and

T-WhileNotCall, which are similar to the rules T-IfCall and T-WhileCall

but are for cases where the method call that serves as the condition is negated,

resulting in the inverted attribution of the appropriate usage from the variant type

given after the verification of the condition to the expressions that compose the

control flow expression.

26

3.5. THE REVISED MOOL LANGUAGE

3. Rules T-If and T-While, which are for cases where the condition is simply a value

and not a method call, are similar to the original rules with the same name, but the

condition is a value v instead of an expression e.

All four rules related to the while control flow expression were modified so that they

allow modifications inside the loop, but to ensure that, in rules T-WhileCall and

T-WhileNotCall, it is possible to execute the condition after executing the loop,

both rules state that the type (and, consequently, the usage) of w after the loop must

be the same as the type w has before executing the condition.

Figure B.17 shows the proposed typing rules for method calls:

1. We modified the rule T-New so that the constructor is evaluated has a call at the

moment of initialisation and added the rule T-UnNew for unrestricted classes

initialisation.

2. Rules T-SelfCall1 and T-SelfCall2, which are for method calls made on this,

are added to solve the problem stated in item 5 in section 3.1.2.

Unlike the other typing rules for method calls, these do not change the usage, like

the system description in [4] specified, and check if the method was already eval-

uated or not, so that the type checker only checks a method body once in case of

self calls, to prevent entering into a loop when the method is recursive. To check

this, the methods definition presented in B.2 is changed so that every method is

associated to a boolean operator that informs if the method was already evaluated

or not. This operator is ignored in the other method call rules.

3. Rule T-Call is similar to the original rule with the same name, but it is extended

for method calls made on local variables and also with the minor error mentioned

in item 4 of 3.1.1 corrected.

Moreover, due to the definition of the predicate allows, in particular the case when

the usage is ε, i.e., the class is unrestricted, the predicate also returns ε, this rule

can also be applied when the call is made on a object of an unrestricted class.

About the subtyping not being safe, one possible solution would be modifying every if-

else typing rule to force both branches to be equivalent, i.e., to produce the same changes

to the interacted objects. For example, consider the following derivation:

27

CHAPTER 3. A REVISION OF THE MOOL LANGUAGE

Γ1 B f .eof () : bool C Γ2 T 1 T 2

Γ1 B if (f .eof ()) { f .close(); true; } else { f .read(); false; } : t C Γ6

T-IfCall

T1

Γ3 B f .close() : C Γ5

T-Call

Γ5 B true : C Γ5

T-True

Γ3 B f .close(); true : C Γ5

T-Seq

Γ3 B f .close(); true : C Γ6

T-InjR

T2

Γ4 B f .read() : C Γ1

T-Call

Γ1 B true : C Γ1

T-False

Γ4 B f .read(); false : C Γ1

T-Seq

Γ4 B f .read(); false : C Γ6

T-InjL

Γ1 = f : File[Read]

Γ2 = f : File[〈lin{ close : un{ } }+ lin{ read : Read }〉]
Γ3 = f : File[lin{ close : un{ } }]
Γ4 = f : File[lin{ read : Read }]
Γ5 = f : File[un{ }]
Γ6 = f : 〈Γ1 + Γ5〉

This derivation is of the same example we used to show that subtyping can be unsafe

in item 2 of section 3.1.2, and demonstrates that the type system allows it to be verified.

If we remove the subtyping this example would not pass, but neither would any other

correct example.

To show how the type system would behave without subtyping For example consider

the following usage:

lin{ open : µRead.un{ eof : 〈close : un{ }+ read : un{ }〉 } }

This usage is a variation of the File usage, with the difference being that after executing

read the file is fully read and closes automatically. With this usage, the previous example

would work without subtyping:

Γ1 B f .eof () : bool C Γ2 T 1 T 2

Γ1 B if (f .eof ()) { f .close(); true; } else { f .read(); false; } : t C Γ5

T-IfCall

T1

Γ3 B f .close() : C Γ5

T-Call

Γ5 B true : C Γ5

T-True

Γ3 B f .close(); true : C Γ5

T-Seq

T2

Γ4 B f .read() : C Γ1

T-Call

Γ1 B true : C Γ5

T-False

Γ4 B f .read(); false : C Γ5

T-Seq

28

3.6. PLT REDEX IMPLEMENTATION OF THE REVISED MOOL

FORMALIZATION

Γ1 = f : File[Read]

Γ2 = f : File[〈lin{ close : un{ } }+ lin{ read : un{ }}〉]
Γ3 = f : File[lin{ close : un{ } }]
Γ4 = f : File[lin{ read : un{ } }]
Γ5 = f : File[un{ }]
Γ6 = f : 〈Γ1 + Γ5〉

Although this would work, it can be too restrictive to force both branches to leave the

interacted object with the same usage in both returned environments. Because of this and

the fact that proposing a more appropriate solution requires a deeper study that is out of

the context of our work, we choose to ignore from now on.

3.6 PLT Redex implementation of the revised Mool

formalization

To test our revision we implemented our formal system in PLT Redex.4 Some of the ex-

amples in this version, aside from local variables and the use of this as an value reference,

are equal to the ones in the PLT Redex implementation of Mool presented in Section 3.4.

The examples presented in this version are the following:

R-01 Implementation of the File example presented in [4] to test the operational seman-

tics of Mool. Running it will result in the reduction graph of the program’s reduction

being shown.

R-01 Implementation of the File example presented in [20].

R-03 Example of a small program that uses an unrestricted class. The program contains

the class Folder which contains three methods independent from each other and a

Main class where a object of Folder is created and interacted with. The Main class

could also be unrestricted but we defined it as linear to show the interaction of an

unrestricted class through a linear one.

R-04 Implementation of the Auction example presented in [4] that serves as a more

complex test to the operational semantics of Mool.

T-01 Typing example of the File example presented in [4]. Should evaluate successfully.

T-02 With the changes made to the T-Spawn rule, the type checker notices that execut-

ing the read operation will modify the variable f but will not consume its usage,

which goes against what is pretended, so the evaluation should fail.

4Available at https://sourceforge.net/p/mool-plt-redex/code/ci/master/tree/mool2.rkt

29

https://sourceforge.net/p/mool-plt-redex/code/ci/master/tree/mool2.rkt

CHAPTER 3. A REVISION OF THE MOOL LANGUAGE

Type Operations

lin(t) def=

tt if v = o∧ h(v).usage = 〈u′ +u′′〉
tt if v = o∧ h(v).usage = lin{mi ;zi }i∈I
ff otherwise

un(t) def=

tt if v = void

tt if v = int

tt if v = bool

tt if v = o∧ h(v).usage = un{mi ;zi }i∈I
ff otherwise

lin(Γ) def= ∀ (t f) ∈ Γ : lin(t)

un(Γ) def= ∀ (t f) ∈ Γ : un(t)

lin(~F) def= ∀ (t f) ∈ ~F : lin(t)

un(~F) def= ∀ (t f) ∈ ~F : un(t)

check(Φ ,u) def=

check(Φ ,ui) u = lin{mi ;ui }i∈I
check(Φ ,ut)∧ check(Θ,uf) u = 〈ut +ut〉
check((Φ ,X : u),u) u = µX.u
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : un = µX.uX
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : u = lin{mj ;uj }j∈J
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : un = X ∧

Φ(X) = 〈ut +ut〉
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : un = X ∧

Φ(X) = lin{mj ;uj }j∈J
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : u = 〈ut +ut〉
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : u = un{mj ;uj }j∈J ∧mi ,mj
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : un = X ∧

Φ(X) = un{mj ;uj }j∈J ∧mi ,mj
tt otherwise

u.allows(mj)
def=

ε u = ε
un u = un

uj u = {mi ;ui }i∈I and j ∈ I
u′{µX.u′/X }.allows(mj) u = µX.u′

undefined otherwise

agree(t, t′) def=

tt if t = t′ = bool

tt if t = t′ = int

tt if t = t′ = void

tt if t = C[u] and t′ = C[u; ~F]
tt if t = null or t′ = null

modified(Γ ,Γ ′) def= ∀r ∈ Γ ′ : r < Γ ∨ Γ (r) , Γ ′(r)

completed(Γ ,Γ ′) def= ∀r ∈ Γ ′ : (r < Γ ∨ Γ (r) , Γ ′(r))∧ (r = C[u; ~F] =⇒ u = un{})

Figure 3.7: Types, Type Definitions and Operations

30

3.6. PLT REDEX IMPLEMENTATION OF THE REVISED MOOL

FORMALIZATION

T-Class

check(∅,u) C[u;∅] . u /C[u; ~F] un(~F)

` class C {u; ~F; ~M}

T-UnClass

∀i ∈ I ·
(y t mi (t

′ x) {s},_) ∈ ~M C[∅],x : t′ . s / C[~F] un(~F)

` class C{~F; ~M}

Figure 3.8: Revised typing rules for programs

T-Branch

∀i ∈ I ·
(y t mi (t

′ x) {s},_) ∈ C.methods this : C[u; ~F],x : t′ B s : t C Γ

Γ B x : t′′ un(t′′) Γ B this : C[ui ; ~Fi] Θ;Γ . ui / Γ ′

Θ;C[u; ~F] . _{mi ;ui }i∈I / Γ ′

T-BranchEnd Θ;Γ . un{} / Γ T-UsageVar (Θ,X : Γ);Γ .X / Γ

Figure 3.9: Revised typing rules for usages

T-Add

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 + a2 : int C Γ ′′
T-Sub

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 − a2 : int C Γ ′′

T-Mult

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 ∗ a2 : int C Γ ′′
T-Div

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 / a2 : int C Γ ′′

Figure 3.10: Revised typing rules for arithmetic expressions

T-Eq

Γ B e1 : t C Γ ′ Γ ′ B e2 : t′ C Γ ′′ agree(t′ , t)

Γ B e1 == e2 : bool C Γ ′′

T-Diff

Γ B e1 : t C Γ ′ Γ ′ B e2 : t′ C Γ ′′ agree(t′ , t)

Γ B e1! = e2 : bool C Γ ′′

T-Greater

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 > a2 : bool C Γ ′′
T-Less

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 < a2 : bool C Γ ′′

T-GtEqual

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 >= a2 : bool C Γ ′′

T-LeEqual

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 <= a2 : bool C Γ ′′

T-And

Γ B b1 : bool C Γ ′ Γ ′ B b2 : bool C Γ ′′

Γ B b1 && b2 : bool C Γ ′′
T-Or

Γ B b1 : bool C Γ ′ Γ ′ B b2 : bool C Γ ′′

Γ B b1 || b2 : bool C Γ ′′

T-Not

Γ B b : bool C Γ ′

Γ B !b : bool C Γ ′′

Figure 3.11: Revised typing rules for boolean expressions

31

CHAPTER 3. A REVISION OF THE MOOL LANGUAGE

T-LinVar

lin(g)

(Γ , r : g) B r : g C Γ
T-UnVar

un(g)

(Γ , r : t) B r : g C (Γ , r : g)

T-LinField

Γ B this : C[u; ~F] ~F(f) = g lin(g)

Γ B this.f : t C Γ {this 7→ C[u; (~F \ f)]}

T-UnField

Γ B this : C[u; ~F] ~F(f) = t un(t)

Γ B this.f : t C Γ

T-NullField

Γ B this : C[u; ~F] (_ f) < ~F

Γ B this.f : null C Γ

Figure 3.12: Revised typing rules for field and variable dereference

T-AssignVar

e , null Γ B d : g C Γ ′ Γ B e : g ′ C Γ ′ agree(g ′ , g)

Γ B d = e : void C Γ ′

T-AssignField

e , null Γ B e : g C Γ ′

Γ ′ B this : C[u; ~F] C.fields(f) = g ′ (_ f) < ~F ∨ ~F(f) = g agree(g ′ , g)

Γ B this.f = e : void C Γ ′{this 7→ C[u; (~F ∪ (g f))]}

T-AssignFieldNull

Γ ′ B Γ B e : null C Γ this : C[u; ~F]

Γ B this.f = e : void C Γ ′{this 7→ C[u; (~F \ (_ f))]}

T-NewVar

d < Γ Γ B e : g ′ C Γ ′ agree(g ′ , g)

Γ B g d = e : void C Γ ′{d 7→ g}

T-Spawn

Γ B s : t C Γ ′ un(modified(Γ ,Γ ′)) completed(Γ ,Γ ′)

Γ B spawn {s} : void C Γ ′

Figure 3.13: Revised typing rules for simple statements

T-03 This program is similar to the one from T-05 but instead of creating a new thread

for a reading operation, two separate threads are created for opening, reading and

close separate files. This example, which evaluates successfully, shows that it is

possible to use the construct spawn with several expressions.

T-04 A similar example to T-01 but now the body of the method main of class Main is

executed using spawn. Although in the end the variable f is unrestricted, it still

can be used after the spawn expression, so it should fail because we changed the T-

Spawn so that every usage modified inside a spawn expression should be at a end,

making it impossible to call any method from the object after the spawn expression.

T-05 The field file of class FileReader is not initialised but it is used, so the type checker

will fail to evaluate because it checks if the field has already been initialised before

using it.

32

3.6. PLT REDEX IMPLEMENTATION OF THE REVISED MOOL

FORMALIZATION

T-IfCall

w , this Γ B w.m(e) : bool C Γ ′

Γ ′ B w : C[〈ut +uf 〉; ~F] Γ ′{w 7→ C[ut ; ~F]}B s′ : t C Γ ′′ Γ ′{w 7→ C[uf ; ~F]}B s′′ : t C Γ ′′

Γ B if (w.m(e)) s′ else s′′ : t C Γ ′′

T-IfNotCall

w , this Γ B w.m(e) : bool C Γ ′ Γ ′ B w : C[〈ut +uf 〉; ~F]
Γ ′{w 7→ C[uf ; ~F]}B s′ : t C Γ ′′ Γ ′{w 7→ C[ut ; ~F]}B s′′ : t C Γ ′′

Γ B if (!w.m(e)) s′ else s′′ : t C Γ ′′

T-IfUnCall

Γ B w.m(e) : bool C Γ ′ Γ ′ B w : C[ε; ~F] Γ ′ B s′ : t C Γ ′′ Γ ′ B s′′ : t C Γ ′′

Γ B if (w.m(e)) s′ else s′′ : t C Γ ′′

T-If

Γ B b : bool C Γ Γ B s′ : t C Γ ′′ Γ B s′′ : t C Γ ′′

Γ B if (b) s′ else s′′ : t C Γ ′′

T-WhileCall

w , this Γ B w.m(e) : bool C Γ ′

Γ ′ B w : C[〈ut +uf 〉; ~F] Γ ′{w 7→ C[ut ; ~F]}B s′ : t C Γ ′′ Γ (w) = Γ ′′(w)

Γ B while (w.m(e)){s′} : t C Γ ′′{w 7→ C[uf ; ~F]}

T-WhileNotCall

w , this Γ B w.m(e) : bool C Γ ′

Γ ′ B w : C[〈ut +uf 〉; ~F] Γ ′{w 7→ C[uf ; ~F]}B s′ : t C Γ ′′ Γ (w) = Γ ′′(w)

Γ B while (!w.m(e)){s′} : t C Γ ′′{w 7→ C[ut ; ~F]}

T-WhileUnCall

Γ B w.m(e) : bool C Γ ′ Γ ′ B w : C[ε; ~F] Γ ′ B s : t C Γ

Γ B while (w.m(e)){s} : t C Γ ′

T-While

Γ B b : bool C Γ Γ B s : t C Γ

Γ B while (b){s} : t C Γ

Figure 3.14: Revised typing rules for control flow expressions

T-New

Γ B e : t′ C Γ ′ C.usage = lin{C;u} (t C(t′ x) {s},_) ∈ C.methods un(Γ ′\Γ)

Γ B new C(e) : C[u] C Γ ′

T-UnNew

Γ B e : t′ C Γ ′ C.usage = ε (t C(t′ x) {s},_) ∈ C.methods un(Γ ′\Γ)

Γ B new C(e) : C[u] C Γ ′

T-SelfCall1

Γ B e : t′ C Γ ′

Γ ′ B this : C[u; ~F] (t m(t′ x) {s},0) ∈ C.methods Γ ′ B s : t C Γ ′′ un(Γ ′\Γ)

Γ B this.m(e) : t C Γ ′′

T-SelfCall2

Γ B e : t′ C Γ ′ Γ ′ B this : C[u; ~F] (t m(t′ x) {s},1) ∈ C.methods

Γ B this.m(e) : t C Γ ′

T-Call

w , this Γ B e : t′ C Γ ′

Γ ′ B w : C[u; ~F] u.allows(m) = u′ (t m(t′ x) {s},_) ∈ C.methods un(Γ ′\Γ)

Γ B w.m(e) : t C Γ ′{w 7→ C[u′ ; ~G]}

Figure 3.15: Revised typing rules for calls

33

CHAPTER 3. A REVISION OF THE MOOL LANGUAGE

T-06 Same as T-01 but the constructor of the class File, where a number of variables are

initialized, is replaced by the incrementation of the field linesRead, just like the

method read. The typechecker does not accept this program;

T-07 The type system now goes inside the body of private methods and verifies them, so

in this example the verification will fail because the type checker notices that the

return type of method count is void but the type of the body is boolean;

T-08 Since now the type system is aware of which methods were already evaluated, this

time the type checker will not enter in a infinite loop because it will only evaluate

the the body of the recursive method read of the class File once, ignoring its body

when reaching the self call and thus evaluating the program successfully.

T-09 Typing example of the File example presented in [20]. Should evaluate successfully.

T-10 A variation of the File example where in the method next of the FileReader class,

after closing the file the field f ile is set to null. The type checker verifies the program

successfully.

T-11 With the new rule T-Class the type checker will detect that the usage goes from

unrestricted to linear when executing the method eof, so the evaluation should fail.

T-12 Again, the new rule T-Class also prevents an usage changing between different

unrestricted states, so the program verification should fail;

T-13 This example is similar to the one in T-12 but now the usage can change between

equivalent unrestricted states.

T-14 Typing example of the simple program introduced in R-03. Should evaluate suc-

cessfully.

T-15 Typing example of the Auction example presented in [4]. Should evaluate success-

fully.

34

Chapter 4

Behavioural type inference

This chapter presents the behavioural type inference algorithm. This algorithm will work

over a variation of the Mool language, called Mool−, which we present in Section 4.1.

Section 4.2 shows an example based on a blog scenario composed by its specification and

an implementation proposal using Mool−. This example has the purpose of exemplifying

the behaviour type inference algorithm presented in Section 4.3. In this section we

specify each step of the algorithm and exemplify the input and output of each one using

the example of Section 4.2.

4.1 Mool−

The target language for our behavioural type inference tool is a variation of Mool which we

call Mool−. It differs from the original version in three aspects: (1) it is based on a revised

version of Mool [35], (2) does not have usages and (3) allows to annotate classes with

assertions. With these assertions, programmers can specify the expected state of an object

during its existence through invariants, and also specify the state of the object before and

after a method execution. Figure 4.1 shows the syntax for the Mool−, which is very

similar to the syntax of the revised Mool but with the removal of usages and addition of

assertions reflected, with the nonterminal ba representing the assertion language, which

is composed by every expression already in the language plus the term |result|, that

represents the result of the method, and implication expression. The syntax only consists

on the user syntax since we do not want to execute the language. For the same reason we

do not provide reduction semantics nor typing rules for it.

4.2 Example: Blog

This example is based on a blog scenario. Due to the lack of collections in Mool we assume

that this blog can contain only one post. There are two types of users:

Admin Can create, remove, and publish a post. The admin can remove a post only

35

CHAPTER 4. BEHAVIOURAL TYPE INFERENCE

(class declarations) D ::= [unrestricted] class C{−→F ;Mc;
−→
M }

(field declaration) F ::= g f

(constructor declaration) Mc ::= inv ba [req ba] init ba t C(t′ x) {e}
(method declarations) M ::= req ba ens ba y t m(t′ x) {e}

(method qualifiers) y ::= ε | sync

(values) v ::= unit | n | true | false | null

(local value references) r ::= d | this

(global value references) w ::= r | r.f
(calls) c ::= new C(e) | r.m(e) | r.f .m(e)

(arithmetic operations) a ::= n | w | c | a+ a | a− a
| a ∗ a | a/a

(boolean operations) b ::= true | false | w | c | a == a | a ! = a

| a <= a | a >= a | a < a | a > a
| b && b | b || b | !b

(assertion language) ba ::= b | |result| | ba→ ba
(expressions) e ::= v | a | b

| c | w
(statements) s ::= e | s;s′

| r.f = e | g d = e | d = e

| if (b) s′ else s′′ | while (b){s′}
| spawn{s}

(types) t ::= void | g | null

(declarable types) g ::= int | bool | C

Figure 4.1: Mool− syntax

if it has not been published before. Figure 4.2 shows a sequence diagram that

exemplifies a communication between the admin and the system;

Viewer Can view a published post. Figure 4.3 shows a sequence diagram that exemplifies

a communication between the viewer and the system.

Listing 4.1 shows the P ost class. Since the access control to a post object is done by an

instance of Blog we can have all three methods available at any time, which explains why

every assertion is true. The reason this class is not specified as an unrestricted class is

because we want to separate the initialisation process of the remaining operations, which

we cannot do with an unrestricted class. Listing 4.2 shows the Blog class. When a blog is

initialised it does not have a post so a new one must be created. After creating a new post

it can be removed or it can be published, making it public to the viewers and blocking

any writing operations on the post.

Listing 4.3 shows the V iewer class. When initialised a session is created and it can be

closed any time. The viewer must request the post, which will save the post locally so that

36

4.2. EXAMPLE: BLOG

Figure 4.2: Admin interaction sequence diagram

Figure 4.3: Viewer interaction sequence diagram

37

CHAPTER 4. BEHAVIOURAL TYPE INFERENCE

Listing 4.1: Code for the Post class
1 class Post {

2

3 string title; string body;

4

5 //@ invariant true;
6 //@ initial true;
7 void Post(string t, string t) {

8 title = t;

9 body = b;

10 }

11

12 //@ requires true;
13 //@ ensures true;
14 string readPost() {

15 title ++ " - " ++ body;

16 }

17 }

the viewer can read it. The viewer must be able to request a post right after beginning

the session.

Finally, Listing 4.4 shows the Main class. The scenario it implements is as follow: It

starts by creating a Blog object and then executes the newP ost method which will create

a P ost object inside the Blog object. With the blog and post set it then creates three

V iewer objects, representing three sessions that will interact with the Blog object and

consequently the P ost object in parallel. In each session the viewer requests the post and,

if successful, reads it. In the end the viewer terminates the session.

4.3 Usage inference algorithm

In this section we describe the full usage inference algorithm adapted to our target lan-

guage. This algorithm should be able to receive a program composed by classes written

in Mool− and return them as classes in Mool annotated with its respective usages. The

algorithm works through three stages, with the first two based on already existing work

which we adapted to fulfil the requirements of our target language. The first stage will

extract the typestates of each Mool− class, which will then be translated into usages in

the second stage, and then the third stage will define the usage state each object is in

the moment of its declaration. For each stage we provide the output for the example

presented in section 4.2 to exemplify what to expect from each.

4.3.1 Stage 1: Typestate generation

For this first stage of the usage inference algorithm we use the behavioural model ap-

proach presented in [6] and briefly described in Section 2.5.

We made a few changes to the algorithm to fit it to our target language. The first

concerns checking the validity of the assertions. In their presentation of the algorithm [6],

38

4.3. USAGE INFERENCE ALGORITHM

Listing 4.2: Code for the Blog class
1 class Blog {

2

3 Post post;

4 boolean is_public;

5

6 //@ invariant true;
7 //@ initial !is_public && post == null;
8 void Blog() {

9 is_public = true;

10 }

11

12 //@ requires !is_public && post == null;
13 //@ ensures !is_public && post != null;
14 void newPost(string title, string body) {

15 post = new Post(title, body);

16 }

17

18 //@ requires !is_public && post != null;
19 //@ ensures !is_public && post == null;
20 void deletePost() {

21 post = null;

22 }

23

24 //@ requires true;
25 //@ ensures |result| −> post != null;
26 boolean hasPost() {

27 post != null;

28 }

29

30 //@ requires true;
31 //@ ensures |result| −> is_public;
32 boolean postIsPublic() {

33 is_public;

34 }

35

36 //@ requires is_public && post != null;
37 //@ ensures is_public && post != null;
38 sync Post viewPost() {

39 no_views = no_views + 1;

40 printStr("This post has ");

41 printInt(no_views);

42 printStr(" visualizations.");

43 post;

44 }

45

46 //@ requires !is_public && post != null;
47 //@ ensures is_public && post != null;
48 void publishPost() {

49 is_public = false;

50 }

51 }

39

CHAPTER 4. BEHAVIOURAL TYPE INFERENCE

Listing 4.3: Code for the Viewer class
1 class Viewer {

2

3 Blog blog;

4 Post post;

5 boolean session;

6

7 //@ invariant true;
8 //@ requires b.postIsPublic();
9 //@ initial post == null && blog != null && session;
10 void Viewer(Blog b) {

11 blog = b;

12 session = true;

13 }

14

15 //@ requires post == null && blog != null && session;
16 //@ ensures (blog != null && session) && (|result| −> post != null);
17 boolean requestPost() {

18 if(blog.postIsPublic()) {

19 post = blog.viewPost();

20 true;

21 } else {

22 printStr("Access denied");

23 false;

24 }

25 }

26

27 //@ requires post != null && blog != null && session;
28 //@ ensures post != null && blog != null && session;
29 void readPost() {

30 printStr(post.viewPost());

31 }

32

33 //@ requires blog != null && session;
34 //@ ensures blog != null && !session;
35 void endSession() {

36 session = false;

37 }

38 }

the authors suggest using code reachability to do the required validity checks, arguing

that their implementation does not use a theorem prover due to the lack of postconditions.

We, however, decided to include postconditions in our language and the init clause that

represents the state of the object after its initialization. Therefore, we are able to use a

theorem prover (Z31) to check the validity of the assertions in first-order logic.

The second important change is related to non-determinism. The original algorithm

allows non-deterministic transitions, depending on the internal state of the program.

Since, as usual in a programming language, Mool does not support non-determinism, we

also adapted the original algorithm in this respect. Mool allows transitions to have, at

most, two target states, with these being based on choice, which are represented in usages

through variant types. These transitions can only be triggered by a boolean method and

1https://github.com/Z3Prover/z3/wiki

40

https://github.com/Z3Prover/z3/wiki

4.3. USAGE INFERENCE ALGORITHM

Listing 4.4: Code for the Main class
1 unrestricted class Main {

2

3 //@ invariant true;
4 //@ initial true;
5 void Main() {

6 Blog blog; Blog = new Blog();

7

8 blog.newPost("Sodales", "Lorem ipsum dolor sit amet");

9 blog.submitPost();

10

11 spawn {

12 Viewer v1; v1 = new Viewer(blog);

13 if(v1.requestPost()) {

14 v1.readPost();

15 }

16 v1.endSession();

17 }

18

19 spawn {

20 Viewer v2; v2 = new Viewer(blog);

21 if(v2.requestPost()) {

22 v2.readPost();

23 }

24 v2.endSession();

25 }

26

27 spawn {

28 Viewer v3; v3 = new Viewer(blog);

29 if(v3.requestPost()) {

30 v3.readPost();

31 }

32 v3.endSession();

33 }

34 }

35 }

Q1

Q2

Q3 Q4

eof

read

eof

close

Figure 4.4: Non-deterministic behaviour a File class

they rely on its result to choose the next state, hence the two target state limit for each

transition.

For the algorithm to allow transitions based on choice (according to the result of a

boolean method), it needs to know what state to choose if the result is true and what

state to choose if the result is false. For example, consider a File class that follows the

protocol defined in Figure 1.1. The transition relation δ is expected to include the triples

(Q1,eof,Q2) and (Q1,eof,Q3), since δ needs to include a transition corresponding to

41

CHAPTER 4. BEHAVIOURAL TYPE INFERENCE

Q1 Ch

Q3

Q4 Q5

eof

false

true

read

close

Figure 4.5: Behaviour a File class

Q1

readPost

Figure 4.6: Typestate for the Post class

Q1

Q2Q3

requestPost

requestPost

endSession

readPost
endSession

Figure 4.7: Typestate for the Viewer class

the case when the method eof returns true and another transition corresponding to the

case when the method eof returns false. We explicitly need to know which target state

corresponds to what result since we cannot rely on the order of how they are presented.

In our algorithm the transition relation is as function defined as in Figure 4.5.

Such transition function is defined by the object state that causes the method to return

true and the object state that causes the method to return false. So, in these situations,

the post-condition of the method that triggers the transition must specify both states.

Therefore, our algorithm returns, for each class, a state machine representing its

typestate. Figures 4.6, 4.7 and 4.8 show a graphical representation of the generated

typestates for the classes that compose the example presented in 4.2.

Q1 Q2 Q3

postIsPublic,hasPostnewPost

postIsPublic,
hasPost

publishPost

deletePost

viewPost,
postIsPublic, hasPost

Figure 4.8: Typestate for the Blog class

42

4.3. USAGE INFERENCE ALGORITHM

4.3.2 Stage 2: Usage generation

The second stage of our algorithm consists thus on obtaining usages from the typestates

obtained from the first phase. To do this we will use the idea presented by Collingbourne

and Kelly [8], which consists on a three-stage algorithm that receives code from a very

simple language similar to C and produces a session type from it.

Although the technique itself infers session types directly from code, it is defined to

work on a limited language that lacks object and concurrency support, two important

aspects of our target language. If we were to adapt it to our target language we would

need to extend it with the missing features. Instead of doing such extension, we adapted

the algorithm of Caso et al. [6].

Therefore, we are only going to use the third stage of Collingbourne and Kelly’s algo-

rithm, where it receives a state machine, converts it into a deterministic state machine,

and applies a function that translates it into a session type. Since Mool has usages and

not session types we need to adapt the function so that it translates state machines to

usages instead. However, the conversion of non-deterministic state machines to determin-

istic ones, in our case that, instead of non-determinism in supports choice, would allow

unwanted behaviour. For example, consider the following state machine:

{eof }{read} {close} { }

eof

eof

read

close

This state machine is nondeterministic. If we translate it into a deterministic one we

get the following:

{eof } {read,close} { }

eof

read

close

This state machine allows us to read a file past its end because the method read is

available after the method eof returns true, meaning that a file can be read past its end.

Instead of following Collingbourne and Kelly’s approach in this respect, we need to in-

troduce variant types. Determining which target transition corresponds to which boolean

value is done using the information given by the new transition function presented in the

previous stage.

Finally, since Mool supports shared and linear objects, the latter with behaviour cap-

tured in usage types and the former with behaviour captured in “standard” class types,

we added a mechanism that ensures the generated usage does not have transitions that

go from a shared state to a non-shared state or a non-equivalent non-shared state, i.e., a

non-shared state that offers a different set of methods.

43

CHAPTER 4. BEHAVIOURAL TYPE INFERENCE

Listing 4.5: Code for the Post class usage
1 usage lin{Post; Q1} where

2 Q1 = un{readPost; Q1};

Listing 4.6: Code for the Viewer class usage
1 usage lin{Viewer; Q1} where

2 Q1 = lin{endSession; end + requestPost; <Q2 + Q1>}

3 Q2 = lin{endSession; end + readPost; Q2};

Listing 4.7: Code for the Blog class usage
1 usage lin{Blog; Q1} where

2 Q1 = lin{postIsPublic; Q1 + hasPost; Q1 + newPost; Q2}

3 Q2 = lin{publishPost; Q3 + postIsPublic; Q2 + hasPost; Q2 + deletePost; Q1}

4 Q3 = un{viewPost; Q3 + postIsPublic; Q3 + hasPost; Q3};

In short, this second phase of our algorithm is loosely inspired by that of Colling-

bourne and Kelly, but has important modifications. To illustrate this phase of our algo-

rithm, consider listings 4.5, 4.6 and 4.7. Each presents the usage type corresponding,

respectively, to the typestates in Figures 4.6, 4.7, and 4.8. These usages were obtained by

the algorithm from the typestates generated in the previous phase of the algorithm.

4.3.3 Stage 3: Object usage state inference

Mool offers the possibility of indicating the usage state an object has in its declaration.

Consider the following excerpt of the V iewer class

Listing 4.8: Excerpt of V iewer class with field blog without an usage state

1 class Viewer {

2 ...

3 Blog blog;

4 ...

5 }

We want the blog field to be initialised in a state where the viewer can request a

post right away which, according to the generated usage for the Blog class in listing 4.2,

corresponds to the usage state Q3. In Mool, we can specify this as follow:

Listing 4.9: Excerpt of V iewer class with field blog annotated with an usage state

1 class Viewer {

2 ...

3 Blog[Q3] blog;

4 ...

5 }

44

4.3. USAGE INFERENCE ALGORITHM

In the context of our work, we do not expect the programmer to know beforehand

the states that will compose the generated usage, so the programmer does not have a way

to indicate the usage state of an object when initialised. Although, we can expect the

programmer to know the overall state of an object when initialised and be able to express

it through assertions.

It is possible to express the expected state of the instance received as a parameter

in the precondition of the method. In this case, since the field blog is initialised in the

constructor with an object passed as an argument, we can specify the usage state of blog

by defining the constructor as follow:

Listing 4.10: Constructor of the V iewer class equipped with assertions

1 //@ invariant true;

2 //@ requires b.postIsPublic();

3 //@ initial !has_post && session;

4 void Viewer(Blog b) {

5 blog = b;

6 ...

7 }

In the requires clause we call the method postIsP ublic on the parameter b, stating

that b must have the post available for the viewer.

In Mool one can also define the usage state of an object returned by a method. The

method viewP ost of the Blog class returns an object of the P ost class

Listing 4.11: Method viewP ost with a return type without an usage state

1 sync Post viewPost() {

2 ...

3 post;

4 }

Since we want the object post to be initialised, we should specify the return type of

the method as follow:

Listing 4.12: Method viewP ost with a return type annotated an usage state

1 sync Post[Q1] viewPost() {

2 ...

3 post;

4 }

This usage state can be inferred using the method postcondition, where it is possible

to express the expected state of the returned object. For this example, since the usage

state Q1 corresponds to the state where the object of type P ost is initialized, we can just

specify that the returned object is not null.

45

CHAPTER 4. BEHAVIOURAL TYPE INFERENCE

Listing 4.13: Method viewP ost equipped with assertions

1 //@ requires is_public && post != null;

2 //@ ensures is_public && post != null;

3 sync Post viewPost() {

4 ...

5 post;

6 }

All these tasks are done by an algorithm that goes through all the methods of each

class and does the following:

1. Checks for parameters containing objects. The algorithm uses the precondition of

the method to determine their state. In this context only the premises related to the

parameters being verified are considered.

2. Checks the return type of the method. If it is a class, the algorithm uses the post-

condition of the method to determine the usage state of the return type. Again,

only the premises related to the class field or local variable being returned by the

method are considered.

3. Analyses the code of the method and checks where are the fields initialised. For

every initialisation value, the algorithm sets the usage state of the field with the

same usage state of the value. Moreover, since the object used as the initialising

value can be manipulated before being assign to the field, the algorithm also checks

the calls on that object and keeps track of its current usage state.

4.4 ML implementation

To present the details of the full algorithm we implemented it in ML. The implementation

can be seen in Chapter C.

Section C.1 shows the types and structures used by the algorithm. Section C.2 shows

the prover module that contains the functions used for validity checks.

Section C.3 shows the ML code for the first stage of the algorithm. The algorithm

starts by determining the initial states, which is done by determining the set of methods

which the precondition is implied by the constructor’s initial condition. From the initial

state, the algorithm starts to determine the transitions of the typestate and does it until

every state of the typestate has been determined and explored. If a state has a boolean

method that manipulates the object, leaving it in one of two possible states, the algorithm

determines the states to which the typestate transits to depending of the returned result.

The algorithm does this by determining the set of methods which the precondition is

implied by the true side and the set of methods which the precondition is implied by the

f alse side of the postcondition of the boolean method

Section C.4 shows the ML code for the second stage of the algorithm. The algorithm

starts by creating a set of pairs (id, state) , with id being the identifier of state. Using this

46

4.4. ML IMPLEMENTATION

set and the transition relation returned by the previous stage, the algorithm translates

each state of the typestate into an usage state. After the usage type is obtained, the

algorithm goes through it and checks for irregularities such as an shared usage state

going to an linear usage state or an non-equivalent shared state. In both situations the

algorithm terminates with an error.

Section C.5 shows the ML code for the third stage of the algorithm, whose overall

description was already presented in Section 4.3.3.

47

Chapter 5

Conclusions

5.1 Summary

The first contribution of this thesis is a detailed analysis of the formal definition and

implementation of the Mool programming language, followed by the formalization of a

new version of the language with corrections of errors and broader approaches to aspects

where the language is too restrictive. One aspect we left out in our formalization of

the language is the subtyping, which we argue that it is unsafe, since solving it would

require work that is out of the context of this thesis. Along with the formalization we also

provide the implementation of an interpreter of both the original and the revised versions

using the Racket programming language, more specificaly its PLT Redex module, both

complemented with examples to helps understanding the evolution between versions.

The second contribution is a behaviour type inference tool that, from code with asser-

tions, generates the usage types necessary for the program to have its behaviour statically

checked by a type system. The tool works on code written in a variation of Mool, called

Mool−, which is based on our revised version of Mool but instead of having usage annota-

tions it has assertions. The reason we we choose to work with a small language instead

of standard Java because right now behavioural type do not cope with features such as

generics and collections. The algorithm takes a program fully annotated with assertions

and either fails: the code is not well-typed (in the standard sense) or it may produce a

run-time error due to calling methods in an incorrect order ; or returns a new version of

the code with the classes annotated with behavioural types (called usages). Usage types

can then be statically checked to verify if the code is data-safe and flow-safe: there will

be no (null pointer) exceptions, no methods called when they are not supposed to, and

moreover, that the protocols of critical resources are fully executed. In short, usage types

ensure safe interoperability, which in this case means object compatibility: all inter-object

method calls are valid and happen at a time where the state of the object allows those

calls.

We implemented the algorithms described herein1. The tool starts by generating a

1Available at http://usinfer.sourceforge.net/

48

http://usinfer.sourceforge.net/

5.1. SUMMARY

Listing 5.1: Code for the File class with weak assertions
1 class File {

2

3 int linesInFile; int linesRead; boolean closed;

4

5 //@ invariant linesRead >= 0 && linesRead ≤ linesInFile;
6 //@ initial linesRead == 0 && linesInFile == 5 && !closed;
7 void File() {

8 linesRead = 0; linesInFile = 5; closed = false;

9 }

10

11 //@ requires linesRead < linesInFile && !closed;
12 //@ ensures linesRead + 1 ≤ linesInFile && !closed;
13 String read() {

14 linesRead = linesRead + 1;

15 "reading line... \n";

16 }

17

18 //@ requires linesRead ≤ linesInFile && !closed;
19 //@ ensures (|result| −> linesRead == linesInFile) && !closed;
20 boolean eof() {

21 linesInFile == linesRead;

22 }

23

24 //@ requires linesRead == linesInFile && !closed;
25 //@ ensures linesRead == linesInFile && closed;
26 void close() {

27 closed = true;

28 }

29 }

permissive state machine representing a typestate, based on the assertions on the code.

The tool then translates the generated typestates into usages. In the end, it defines the

usage state where each object is when declared by using the assertions and the usages

obtained in the previous stage. This tool is composed by three algorithms, with the first

two adapted from algorithms presented in other works [6, 8], and the third one being

original.

During the whole process the tool assumes the assertions are correct. If not, it can

cause the tool to fail to infer the usage types or to produce usage types that do not specify

the expected behaviour, which can result in allowing unwanted behaviour or invalidating

correct behaviour. For example, consider the Mool− for the File class presented in Listing

5.1. Using the behavioural inference tool to extract the usage for this class would result in

the usage presented in Listing 5.2. The generated usage is accepted by the Mool compiler,

allowing programs such as the one in Listing 5.3 to be accepted by the compiler when it

should not because the method read is executed twice for each execution of method eof ,

allowing to read one extra line that does not exist and thus generating an runtime error.

By analysing the usage in 5.2, the programmer can see that the assertions specify a

behaviour that allows the method eof to be executed at any point of the program. While

the code of the method eof does not manipulate the object, the usage would allow code

49

CHAPTER 5. CONCLUSIONS

Listing 5.2: Usage of the File class with weak assertions
1 usage lin{File; Q1} where

2 Q1 = lin{eof; <Q2 + Q1> + read; Q1}

3 Q2 = lin{eof; <Q2 + Q1> + close; end};

Listing 5.3: Code with incorrect interaction with the File class
1 usage lin{File; Q1} where

2 Q1 = lin{eof; <Q2 + Q1> + read; Q1}

3 Q2 = lin{close; end};

4

5 f = new File();

6 f.open();

7

8 if(f.eof()) {

9 f.close();

10 false;

11 } else {

12 s = s ++ f.read();

13 f.read(); //The reader tries to read two lines from the file in one go.
14 true;

15 }

where, after reaching the end of the file, the object would transit to a state where it

could execute the method read again. A possible solution is the File class in Mool− in

Listing 5.4. This new class uses two new variables: lineInBuf f er, which indicates that

there is one line that can be consumed, and eof , that is true when the end of the file has

been reached. Every time the method eof is executed, if we have not reached the end

of the file, the variable lineInBuf f er will turn true, and when we execute the method

read, which requires lineInBuf f er to be true, we read the file and turn lineInBuf f er to

f alse, indicating that the line verified by eof was consumed. This will continue until eof

returns true, and by then lineInBuf f er will remain f alse, not allowing the execution of

read anymore. The variable eof represents the comparison between variables linesRead

and linesInFile, which seems redundant but we need it for the tool to separate the state

specified by the precondition and both states specified in the postcondition of method

eof .

Using the behavioural inference tool we get the usage in Listing 5.5, which does not

allow code such as the one in Listing 5.3.

5.2 Future work

The difficulty of programming with assertions in comparison to programming with be-

haviour types is a valid topic of discussion because it is harder for the programmer to

specify the expected behaviour of the program using assertions and also more error-prone

since it is possible to write assertions that produce a valid (i.e., accepted by the type sys-

tem) but ill-behaved usage. The File class example presented in section 5.1 is an example

50

5.2. FUTURE WORK

Listing 5.4: Code for the File class with stronger assertions
1 class File {

2

3 int linesInFile; int linesRead; boolean closed;

4 boolean lineInBuffer; boolean eof;

5

6 //@ invariant linesRead >= 0 && linesRead ≤ linesInFile;
7 //@ initial linesRead == 0 && linesInFile == 5 && !closed && !lineInBuffer && !eof;
8 void File() {

9 linesRead = 0;

10 linesInFile = 5;

11 closed = false;

12 lineInBuffer = false;

13 }

14

15 //@ requires linesRead < linesInFile && !closed && lineInBuffer && !eof;
16 //@ ensures linesRead + 1 ≤ linesInFile && !closed && !lineInBuffer && !eof;
17 String read() {

18 linesRead = linesRead + 1;

19 lineInBuffer = false;

20 "reading line... \n";

21 }

22

23 //@ requires linesRead ≤ linesInFile && !closed && !lineInBuffer && !eof;
24 //@ ensures (linesRead == linesInFile −> (!lineInBuffer && eof)) && !closed;
25 boolean eof() {

26 lineInBuffer = !(linesRead == linesInFile);

27 !lineInBuffer;

28 }

29

30 //@ requires linesRead == linesInFile && !closed && eof;
31 //@ ensures linesRead == linesInFile && closed && eof;
32 void close() {

33 closed = true;

34 }

35 }

Listing 5.5: Usage of the File class with stronger assertions
1 usage lin{File; Q1} where

2 Q1 = lin{eof; <Q2 + Q3>}

3 Q3 = lin{read; Q1}

4 Q2 = lin{close; end};

51

CHAPTER 5. CONCLUSIONS

of how easy is to produce wrong assertions, and also an example of the extra work the

programmer might have to do just to produce assertions that allows the tool to infer

the correct usage types by showing a situation where the programmer had to use extra

variables that would not use otherwise.

At the moment the tool requires the specification of the behaviour of the code through

assertions written by the programmer, but in the end we want it to infer the behaviour

from the code itself, removing as much as possible the need for assertions, so future work

will consist on automatically inferring as much assertions from the code as possible, with

the next step consisting on postcondition inference using Hoare logic.

Future work will also include developing correctness proofs for the algorithms.

52

Bibliography

[1] D. Ancona, V. Bono, M. Bravetti, J. Campos, P.-M. Deniélou, N. Gesbert, E. Giachino,

R. Hu, E. B. Johnsen, F. Martins, et al. “BETTY WG3–Languages: State of the Art

Report”. In: Report of the EU COST Action IC1201–Behavioural Types for Reliable
Large-Scale Software Systems. (2014).

[2] C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and Mind
Series). The MIT Press, 2008. isbn: 026202649X, 9780262026499.

[3] J. Campos and V. T. Vasconcelos. “Channels as Objects in Concurrent Object-

Oriented Programming”. In: Proceedings Third Workshop on Programming Language
Approaches to Concurrency and communication-cEntric Software. Vol. 69. EPTCS.

2010, pp. 12–28.

[4] J. C. Campos. “Linear and shared objects in concurrent programming”. MA thesis.

University of Lisbon, 2010.

[5] L. Cardelli. “Type Systems”. In: The Computer Science and Engineering Handbook.

Ed. by A. B. Tucker. CRC Press, 1997. Chap. 103, pp. 2208–2236.

[6] G. D. Caso, V. Braberman, D. Garbervetsky, and S. Uchitel. “Enabledness-based Pro-

gram Abstractions for Behavior Validation”. In: ACM Trans. Softw. Eng. Methodol.
22.3 (July 2013), 25:1–25:46. issn: 1049-331X. doi: 10.1145/2491509.2491519.

url: http://doi.acm.org/10.1145/2491509.2491519.

[7] E. M. Clarke and E. A. Emerson. “Design and Synthesis of Synchronization Skele-

tons Using Branching-Time Temporal Logic”. In: Logic of Programs, Workshop. Lon-

don, UK, UK: Springer-Verlag, 1982, pp. 52–71. isbn: 3-540-11212-X. url: http:

//dl.acm.org/citation.cfm?id=648063.747438.

[8] P. Collingbourne and P. H. J. Kelly. “Inference of Session Types From Control Flow”.

In: Electron. Notes Theor. Comput. Sci. 238.6 (June 2010), pp. 15–40. issn: 1571-

0661. doi: 10.1016/j.entcs.2010.06.003. url: http://dx.doi.org/10.1016/

j.entcs.2010.06.003.

[9] M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopoulou. “A Distributed

Object-Oriented Language with Session Types”. In: Lecture Notes in Computer
Science 3705 (2005), p. 299. doi: 10.1007/11580850_16.

53

http://dx.doi.org/10.1145/2491509.2491519
http://doi.acm.org/10.1145/2491509.2491519
http://dl.acm.org/citation.cfm?id=648063.747438
http://dl.acm.org/citation.cfm?id=648063.747438
http://dx.doi.org/10.1016/j.entcs.2010.06.003
http://dx.doi.org/10.1016/j.entcs.2010.06.003
http://dx.doi.org/10.1016/j.entcs.2010.06.003
http://dx.doi.org/10.1007/11580850_16

BIBLIOGRAPHY

[10] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. “Session

Types for Object-Oriented Languages”. In: ECOOP 2006 – Object-Oriented Program-
ming: 20th European Conference, Nantes, France, July 3-7, 2006. Proceedings. Ed. by

D. Thomas. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 328–352.

isbn: 978-3-540-35727-8. doi: 10.1007/11785477_20. url: http://dx.doi.

org/10.1007/11785477_20.

[11] S. Drossopoulou, D. Dezani-Ciancaglini, and M. Coppo. “Amalgamating the Ses-

sion Types and the Object Oriented Programming Paradigms”. In: Multiparadigm
Programming with Object-Oriented Languages 2007 (an ECOOP workshop). 2007.

url: http://pubs.doc.ic.ac.uk/sessionsAmalgamateOO/.

[12] Edsger W. Dijkstra - A.M. Turing Award Winner. url: http://amturing.acm.org/

award_winners/dijkstra_1053701.cfm (visited on 01/29/2016).

[13] E.W.Dijkstra Archive: The Humble Programmer (EWD 340). url: https://www.

cs . utexas . edu / ~EWD / transcriptions / EWD03xx / EWD340 . html (visited on

01/30/2016).

[14] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex. 1st.

The MIT Press, 2009. isbn: 0262062755, 9780262062756.

[15] M. Felleisen, R. B. Findler, M. Flatt, S. Krishnamurthi, E. Barzilay, J. A. McCarthy,

and S. Tobin-Hochstadt. “The Racket Manifesto.” In: SNAPL. Ed. by T. Ball, R.

Bodík, S. Krishnamurthi, B. S. Lerner, and G. Morrisett. Vol. 32. LIPIcs. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 113–128. isbn: 978-3-

939897-80-4. url: http://dblp.uni-trier.de/db/conf/snapl/snapl2015.

html#FelleisenFFKBMT15.

[16] J.-C. Filliâtre. “Deductive software verification”. In: International Journal on Soft-
ware Tools for Technology Transfer 13.5 (2011), pp. 397–403. issn: 1433-2787. doi:

10.1007/s10009-011-0211-0. url: http://dx.doi.org/10.1007/s10009-011-

0211-0.

[17] J.-C. Filliâtre and A. Paskevich. “Why3 – Where Programs Meet Provers”. In:

ESOP’13 22nd European Symposium on Programming. Vol. 7792. Rome, Italy:

Springer, Mar. 2013. url: https://hal.inria.fr/hal-00789533.

[18] R. Garcia, E. Tanter, R. Wolff, and J. Aldrich. “Foundations of Typestate-Oriented

Programming”. In: ACM Trans. Program. Lang. Syst. 36.4 (Oct. 2014), 12:1–12:44.

issn: 0164-0925. doi: 10.1145/2629609. url: http://doi.acm.org/10.1145/

2629609.

[19] S. Gay and V. T. Vasconcelos. “Linear Type Theory for Asynchronous Session Types”.

In: Journal of Functional Programming 20.1 (2010), pp. 19–50. doi: http://dx.doi.

org/10.1017/S0956796809990268. url: http://www.di.fc.ul.pt/~vv/

papers/gay.vasconcelos_linear-sessions.pdf.

54

http://dx.doi.org/10.1007/11785477_20
http://dx.doi.org/10.1007/11785477_20
http://dx.doi.org/10.1007/11785477_20
http://pubs.doc.ic.ac.uk/sessionsAmalgamateOO/
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
http://dblp.uni-trier.de/db/conf/snapl/snapl2015.html#FelleisenFFKBMT15
http://dblp.uni-trier.de/db/conf/snapl/snapl2015.html#FelleisenFFKBMT15
http://dx.doi.org/10.1007/s10009-011-0211-0
http://dx.doi.org/10.1007/s10009-011-0211-0
http://dx.doi.org/10.1007/s10009-011-0211-0
https://hal.inria.fr/hal-00789533
http://dx.doi.org/10.1145/2629609
http://doi.acm.org/10.1145/2629609
http://doi.acm.org/10.1145/2629609
http://dx.doi.org/http://dx.doi.org/10.1017/S0956796809990268
http://dx.doi.org/http://dx.doi.org/10.1017/S0956796809990268
http://www.di.fc.ul.pt/~vv/papers/gay.vasconcelos_linear-sessions.pdf
http://www.di.fc.ul.pt/~vv/papers/gay.vasconcelos_linear-sessions.pdf

BIBLIOGRAPHY

[20] S. J. Gay, N. Gesbert, A. Ravara, and V. T. Vasconcelos. “Modular Session Types for

Objects”. In: Logical Methods in Computer Science 11.4 (2015). doi: 10.2168/LMCS-

11(4:12)2015. url: http://dx.doi.org/10.2168/LMCS-11(4:12)2015.

[21] E. F. Graversen, J. B. Harbo, H. Hüttel, M. O. Bjerregaard, N. S. Poulsen, and S.

Wahl. “Type Inference for Session Types in the Pi-calculus”. Aalborg University,

Department of Computer Science. 2015.

[22] K. Honda. “Types for Dyadic Interaction”. In: Proceedings of the 4th International
Conference on Concurrency Theory (CONCUR’93). Vol. 715. Lecture Notes in Com-

puter Science. Springer, 1993, pp. 509–523.

[23] K. Honda, V. T. Vasconcelos, and M. Kubo. “Language Primitives and Type Dis-

cipline for Structured Communication-Based Programming”. In: Proceedings of
the 7th European Symposium on Programming: Programming Languages and Systems.
ESOP ’98. London, UK, UK: Springer-Verlag, 1998, pp. 122–138. isbn: 3-540-

64302-8. url: http://dl.acm.org/citation.cfm?id=645392.651876.

[24] H. Hüttel et al. “Foundations of Behavioural Types”. In: ACM Comput. Surv. (To

appear).

[25] E. Kindler. Safety and Liveness Properties: A Survey.

[26] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J. A. Mc-

Carthy, J. Rafkind, S. Tobin-Hochstadt, and R. B. Findler. “Run Your Research:

On the Effectiveness of Lightweight Mechanization”. In: SIGPLAN Not. 47.1 (Jan.

2012), pp. 285–296. issn: 0362-1340. doi: 10.1145/2103621.2103691. url:

http://doi.acm.org/10.1145/2103621.2103691.

[27] R. Lo, F. Chow, R. Kennedy, S. ming Liu, and P. Tu. “Register Promotion by Sparse

Partial Redundancy Elimination of Loads and Stores”. In: In Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and Implementation.

1998, pp. 26–37.

[28] M. Neubauer and P. Thiemann. “An Implementation of Session Types”. In: Practical
Aspects of Declarative Languages: 6th International Symposium, PADL 2004, Dallas,
TX, USA, June 18-19, 2004. Proceedings. Ed. by B. Jayaraman. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2004, pp. 56–70. isbn: 978-3-540-24836-1. doi: 10.

1007/978-3-540-24836-1_5. url: http://dx.doi.org/10.1007/978-3-540-

24836-1_5.

[29] H. R. Nielson and F. Nielson. Semantics with Applications: An Appetizer (Undergrad-
uate Topics in Computer Science). Secaucus, NJ, USA: Springer-Verlag New York,

Inc., 2007. isbn: 1846286913.

[30] B. C. Pierce. Types and Programming Languages. Cambridge, MA, USA: MIT Press,

2002. isbn: 0-262-16209-1.

55

http://dx.doi.org/10.2168/LMCS-11(4:12)2015
http://dx.doi.org/10.2168/LMCS-11(4:12)2015
http://dx.doi.org/10.2168/LMCS-11(4:12)2015
http://dl.acm.org/citation.cfm?id=645392.651876
http://dx.doi.org/10.1145/2103621.2103691
http://doi.acm.org/10.1145/2103621.2103691
http://dx.doi.org/10.1007/978-3-540-24836-1_5
http://dx.doi.org/10.1007/978-3-540-24836-1_5
http://dx.doi.org/10.1007/978-3-540-24836-1_5
http://dx.doi.org/10.1007/978-3-540-24836-1_5

BIBLIOGRAPHY

[31] J.-P. Queille and J. Sifakis. “Specification and Verification of Concurrent Systems

in CESAR”. In: Proceedings of the 5th Colloquium on International Symposium on
Programming. London, UK, UK: Springer-Verlag, 1982, pp. 337–351. isbn: 3-540-

11494-7. url: http://dl.acm.org/citation.cfm?id=647325.721668.

[32] R. E. Strom and S Yemini. “Typestate: A Programming Language Concept for

Enhancing Software Reliability”. In: IEEE Trans. Softw. Eng. 12.1 (Jan. 1986),

pp. 157–171. issn: 0098-5589. doi: 10.1109/TSE.1986.6312929. url: http:

//dx.doi.org/10.1109/TSE.1986.6312929.

[33] K. Takeuchi, K. Honda, and M. Kubo. “An Interaction-based Language and its

Typing System”. In: In PARLE’94, volume 817 of LNCS. Springer-Verlag, 1994,

pp. 398–413.

[34] The Plaid Programming Language. url: http://www.cs.cmu.edu/~aldrich/

plaid/ (visited on 02/05/2016).

[35] C. Vasconcelos and A. Ravara. “Revision Proposal for the Mool Language”. 2016.

url: http://arxiv.org/abs/1604.06245.

[36] V. T. Vasconcelos, S. Gay, and A. Ravara. “Typechecking a Multithreaded Func-

tional Language with Session Types”. In: 368.1–2 (2006), pp. 64–87. url: http:

//www.di.fc.ul.pt/~vv/papers/vasconcelos.gay.ravara_tychecking-

session-types.pdf.

56

http://dl.acm.org/citation.cfm?id=647325.721668
http://dx.doi.org/10.1109/TSE.1986.6312929
http://dx.doi.org/10.1109/TSE.1986.6312929
http://dx.doi.org/10.1109/TSE.1986.6312929
http://www.cs.cmu.edu/~aldrich/plaid/
http://www.cs.cmu.edu/~aldrich/plaid/
http://arxiv.org/abs/1604.06245
http://www.di.fc.ul.pt/~vv/papers/vasconcelos.gay.ravara_tychecking-session-types.pdf
http://www.di.fc.ul.pt/~vv/papers/vasconcelos.gay.ravara_tychecking-session-types.pdf
http://www.di.fc.ul.pt/~vv/papers/vasconcelos.gay.ravara_tychecking-session-types.pdf

Appendix A

Reduction graphs in Racket

Figures A.1, A.2 and A.3 show the reduction graphs for simple program examples for the

While language and serve as examples of how PLT-Redex allows to execute the imple-

mented languages and visualize it.

Figure A.1: PLT-Redex reduction graph example 2

57

APPENDIX A. REDUCTION GRAPHS IN RACKET

Figure A.2: PLT-Redex reduction graph example 1

58

Figure A.3: PLT-Redex reduction graph example 3

59

Appendix B

Revised Mool syntax and rules

60

User Syntax

(class declarations) D ::= class C {u; ~F; ~M}
(field declaration) F ::= g f

(method declarations) M ::= y t m(t′ x) {e}
(method qualifiers) y ::= ε | sync

(values) v ::= unit | n | true | false | null

(local value references) r ::= d | this

(global value references) w ::= r | r.f
(calls) c ::= new C(e) | r.m(e) | r.f .m(e)

(arithmetic operations) a ::= n | w | c | a+ a | a− a
| a ∗ a | a/a

(boolean operations) b ::= true | false | w | c | a == a | a ! = a

| a <= a | a >= a | a < a | a > a
| b && b | b || b | !b

(expressions) e ::= v | a | b
| c | w

(statements) s ::= e | s;s′

| r.f = e | g d = e | d = e

| if (b) s′ else s′′ | while (b){s′}
| spawn{s}

(types) t ::= void | g | null

(declarable types) g ::= int | bool | C[z]

(class usages) u ::= ε | q{mi ;zi }i∈I | µX.u
(usages) z ::= u | 〈u +u〉 | X

(usage types) q ::= un | lin

Runtime Syntax

(values) v ::= . . . | o
(value references) r ::= . . . | o

(class usages) u ::= . . . | z

(types) t ::= . . . | C[z; ~F]

(object records) R ::= (C,u,
−−−−−→
f = v , l)

(field value map) l ::= 0 | 1

(heap) h ::= ∅ | h,o = R

(evaluation context) E ::= [−] | E;s | o.f = E | o.m(E) | o.f .m(E)

| if (E) s else s′

(States) S ::= (h, local, s1 | . . . | sn)

Figure B.1: Revised syntax

61

APPENDIX B. REVISED MOOL SYNTAX AND RULES

Object Record and Heap Operations

〈C,u, ~V 〉.f def= ~V (f) 〈C,u, ~V 〉.usage
def= u

〈C,u, ~V 〉.class
def= C

Operations for values and types

lin(v) def=

tt if v = o∧ h(v).usage = 〈u′ +u′′〉
tt if v = o∧ h(v).usage = lin{mi ;zi }i∈I
ff otherwise

un(v) def=

tt if v = unit

tt if v = n
tt if v = true

tt if v = false

tt if v = o∧ h(v).usage = un{mi ;zi }i∈I
ff otherwise

Class Definition Operations

C.methods
def=
−−−−−−−→
M,eval where class C {u; ~F; ~M} ∈ ~D and eval ∈ {0,1}

C.fields
def= ~F where class C {u; ~F; ~M} ∈ ~D

C.usage
def= u where class C {u; ~F; ~M} ∈ ~D

Figure B.2: Auxiliary definitions and Operations

R-Context

(h, local, s1 | . . . | s | . . . | sn) −→ (h′ , local′ , s1 | . . . | s′ | . . . | sn)

(h, local, s1 | . . . | E[s] | . . . | sn) −→ (h′ , local′ , s1 | . . . | E[s′] | . . . | sn)

R-Spawn (h, local, s1 | . . . | E[spawn{s}] | . . . | sn) −→ (h, local, s1 | . . . | E[unit] | . . . | sn)

Figure B.3: Reduction semantics for states

62

R-UnField

h(o).f = v un(v,h)

(h, local,o.f) −→ (h, local,v)
R-LinField

h(o).f = v lin(v,h)

(h, local,o.f) −→ (h{o.f 7→ null}, local,v)

R-UnVar

h(d) = v un(v,h)

(h, local,d) −→ (h, local,v)
R-LinVar

h(d) = v lin(v,h)

(h, local,d) −→ (h{d 7→ null}, local,v)

R-Seq (h, local,v;s) −→ (h, local, s) R-NewVar (h, local,g d = v) −→ (h, local{d 7→ v},unit)

R-AssignVar (h, local,d = v) −→ (h, local{d 7→ v},unit)

R-AssignField

v , null

(h, local,o.f = v) −→ (h{o.f 7→ v}, local,unit)

R-AssignFieldNull

v = null

(h, local,o.f = v) −→ (h \ o.f , local,unit)

R-New

o fresh (_ C(_ x) {s},_) ∈ C.methods C.fields =
−−→
t f C.usage = u

(h, local,new C(v)) −→ ((h,o = 〈C,u,
−−−−−−−→
f = null 〉), local, s{o/this}{v/x};o)

R-Call

(_ m(_ x) {s},_) ∈ (h(o).class).methods

(h, local,o.m(v)) −→ (h, local, s{o/this}{v/x})

R-FieldCall

(_ m(_ x) {s},_) ∈ (h(o).f .class).methods

(h,∅, o.f .m(v)) −→ (h,∅, s{o/this}{v/x})

R-While (h, local,while (b){s}) −→ (h, local, if (b) (s;while (b){s}) else unit)

R-IfTrue (h, local, if (true) s′ else s′′) −→ (h, local, s′)

R-IfFalse (h, local, if (false) s′ else s′′) −→ (h, local, s′′)

Figure B.4: Revised reduction Semantics

N(n) = n A(n,h, local) = N(n)

A(o.f ,h, local) = h(o).f A(d,h, local) = local(d)

A(a1 + a2,h, local) = A(a1,h, local) + A(a2,h, local)

A(a1 − a2,h, local) = A(a1,h, local)−A(a2,h, local)

A(a1 ∗ a2,h, local) = A(a1,h, local) ∗A(a2,h, local)

A(a1 / a2,h, local) = A(a1,h, local) / A(a2,h, local)

Figure B.5: Evaluation functions for arithmetic values and expressions

63

APPENDIX B. REVISED MOOL SYNTAX AND RULES

B(true,h, local) = true B(false,h, local) = false

B(o.f ,h, local) = h(o).f B(d,h, local) = local(d)

B(a1 == a2,h, local) =

true A(a1,h, local) = A(a2,h, local)
false A(a1,h, local) ,A(a2,h, local)

B(a1! = a2,h, local) =

true A(a1,h, local) ,A(a2,h, local)
false A(a1,h, local) = A(a2,h, local)

B(a1 < a2,h, local) =

true A(a1,h, local) <A(a2,h, local)
false A(a1,h, local) >= A(a2,h, local)

B(a1 < a2,h, local) =

true A(a1,h, local) <A(a2,h, local)
false A(a1,h, local) <= A(a2,h, local)

B(a1 <= a2,h, local) =

true A(a1,h, local) <= A(a2,h, local)
false A(a1,h, local) >A(a2,h, local)

B(a1 >= a2,h, local) =

true A(a1,h, local) >= A(a2,h, local)
false A(a1,h, local) <A(a2,h, local)

B(b1 && b2,h, local) =

true B(b1,h, local) = true∧ (b2,h, local) = true

false otherwise

B(b1 || b2,h, local) =

true B(b1,h, local) = true∨ (b2,h, local) = true

false otherwise

B(!b,h, local) =

true B(b,h, local) = false

false B(b,h, local) = true

Figure B.6: Evaluation functions for boolean values and expressions

64

Type Operations

lin(t) def=

tt if v = o∧ h(v).usage = 〈u′ +u′′〉
tt if v = o∧ h(v).usage = lin{mi ;zi }i∈I
ff otherwise

un(t) def=

tt if v = void

tt if v = int

tt if v = bool

tt if v = o∧ h(v).usage = un{mi ;zi }i∈I
ff otherwise

lin(Γ) def= ∀ (t f) ∈ Γ : lin(t)

un(Γ) def= ∀ (t f) ∈ Γ : un(t)

lin(~F) def= ∀ (t f) ∈ ~F : lin(t)

un(~F) def= ∀ (t f) ∈ ~F : un(t)

check(Φ ,u) def=

check(Φ ,ui) u = lin{mi ;ui }i∈I
check(Φ ,ut)∧ check(Θ,uf) u = 〈ut +ut〉
check((Φ ,X : u),u) u = µX.u
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : un = µX.uX
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : u = lin{mj ;uj }j∈J
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : un = X ∧

Φ(X) = 〈ut +ut〉
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : un = X ∧

Φ(X) = lin{mj ;uj }j∈J
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : u = 〈ut +ut〉
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : u = un{mj ;uj }j∈J ∧mi ,mj
ff u = un{mi ;ui }i∈I ∧∃un ∈ ui : un = X ∧

Φ(X) = un{mj ;uj }j∈J ∧mi ,mj
tt otherwise

u.allows(mj)
def=

ε u = ε
un u = un

uj u = {mi ;ui }i∈I and j ∈ I
u′{µX.u′/X }.allows(mj) u = µX.u′

undefined otherwise

agree(t, t′) def=

tt if t = t′ = bool

tt if t = t′ = int

tt if t = t′ = void

tt if t = C[u] and t′ = C[u; ~F]
tt if t = null or t′ = null

modified(Γ ,Γ ′) def= ∀r ∈ Γ ′ : r < Γ ∨ Γ (r) , Γ ′(r)

completed(Γ ,Γ ′) def= ∀r ∈ Γ ′ : (r < Γ ∨ Γ (r) , Γ ′(r))∧ (r = C[u; ~F] =⇒ u = un{})

Figure B.7: Types, Type Definitions and Operations

65

APPENDIX B. REVISED MOOL SYNTAX AND RULES

T-Class

check(∅,u) C[u;∅] . u /C[u; ~F] un(~F)

` class C {u; ~F; ~M}

T-UnClass

∀i ∈ I ·
(y t mi (t

′ x) {s},_) ∈ ~M C[∅],x : t′ . s / C[~F] un(~F)

` class C{~F; ~M}

Figure B.8: Revised typing rules for programs

T-Branch

∀i ∈ I ·
(y t mi (t

′ x) {s},_) ∈ C.methods this : C[u; ~F],x : t′ B s : t C Γ

Γ B x : t′′ un(t′′) Γ B this : C[ui ; ~Fi] Θ;Γ . ui / Γ ′

Θ;C[u; ~F] . _{mi ;ui }i∈I / Γ ′

T-BranchEnd Θ;Γ . un{} / Γ T-UsageVar (Θ,X : Γ);Γ .X / Γ

T-Variant

Θ;Γ ′ . ut / Γ Θ;Γ ′′ . uf / Γ

Θ;〈Γ ′ + Γ ′′〉 . 〈ut +uf 〉 / Γ
T-Rec

(Θ,X : Γ);Γ . u / Γ ′

Θ;Γ . µX.u / Γ ′

Figure B.9: Revised typing rules for usages

T-Unit Γ B unit : void C Γ T-Int Γ B n : int C Γ T-True Γ B true : boolean C Γ

T-False Γ B false : boolean C Γ T-Null Γ B null : null C Γ

Figure B.10: Revised typing rules for values

T-Add

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 + a2 : int C Γ ′′
T-Sub

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 − a2 : int C Γ ′′

T-Mult

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 ∗ a2 : int C Γ ′′
T-Div

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 / a2 : int C Γ ′′

Figure B.11: Revised typing rules for arithmetic expressions

66

T-Eq

Γ B e1 : t C Γ ′ Γ ′ B e2 : t′ C Γ ′′ agree(t′ , t)

Γ B e1 == e2 : bool C Γ ′′

T-Diff

Γ B e1 : t C Γ ′ Γ ′ B e2 : t′ C Γ ′′ agree(t′ , t)

Γ B e1! = e2 : bool C Γ ′′

T-Greater

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 > a2 : bool C Γ ′′
T-Less

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 < a2 : bool C Γ ′′

T-GtEqual

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 >= a2 : bool C Γ ′′

T-LeEqual

Γ B a1 : int C Γ ′ Γ ′ B a2 : int C Γ ′′

Γ B a1 <= a2 : bool C Γ ′′

T-And

Γ B b1 : bool C Γ ′ Γ ′ B b2 : bool C Γ ′′

Γ B b1 && b2 : bool C Γ ′′
T-Or

Γ B b1 : bool C Γ ′ Γ ′ B b2 : bool C Γ ′′

Γ B b1 || b2 : bool C Γ ′′

T-Not

Γ B b : bool C Γ ′

Γ B !b : bool C Γ ′′

Figure B.12: Revised typing rules for boolean expressions

T-LinVar

lin(g)

(Γ , r : g) B r : g C Γ
T-UnVar

un(g)

(Γ , r : t) B r : g C (Γ , r : g)

T-LinField

Γ B this : C[u; ~F] ~F(f) = g lin(g)

Γ B this.f : t C Γ {this 7→ C[u; (~F \ f)]}

T-UnField

Γ B this : C[u; ~F] ~F(f) = t un(t)

Γ B this.f : t C Γ

T-NullField

Γ B this : C[u; ~F] (_ f) < ~F

Γ B this.f : null C Γ

Figure B.13: Revised typing rules for field and variable dereference

67

APPENDIX B. REVISED MOOL SYNTAX AND RULES

T-Seq

Γ B s : t C Γ ′ Γ ′ B t′ : g ′ C Γ ′′

Γ B s;s′ : t′ C Γ ′′

T-AssignVar

e , null Γ B d : g C Γ ′ Γ B e : g ′ C Γ ′ agree(g ′ , g)

Γ B d = e : void C Γ ′

T-AssignField

e , null Γ B e : g C Γ ′

Γ ′ B this : C[u; ~F] C.fields(f) = g ′ (_ f) < ~F ∨ ~F(f) = g agree(g ′ , g)

Γ B this.f = e : void C Γ ′{this 7→ C[u; (~F ∪ (g f))]}

T-AssignFieldNull

Γ ′ B Γ B e : null C Γ this : C[u; ~F]

Γ B this.f = e : void C Γ ′{this 7→ C[u; (~F \ (_ f))]}

T-NewVar

d < Γ Γ B e : g ′ C Γ ′ agree(g ′ , g)

Γ B g d = e : void C Γ ′{d 7→ g}

T-Spawn

Γ B s : t C Γ ′ un(modified(Γ ,Γ ′)) completed(Γ ,Γ ′)

Γ B spawn {s} : void C Γ ′

Figure B.14: Revised typing rules for simple statements

T-IfCall

w , this Γ B w.m(e) : bool C Γ ′

Γ ′ B w : C[〈ut +uf 〉; ~F] Γ ′{w 7→ C[ut ; ~F]}B s′ : t C Γ ′′ Γ ′{w 7→ C[uf ; ~F]}B s′′ : t C Γ ′′

Γ B if (w.m(e)) s′ else s′′ : t C Γ ′′

T-IfNotCall

w , this Γ B w.m(e) : bool C Γ ′ Γ ′ B w : C[〈ut +uf 〉; ~F]
Γ ′{w 7→ C[uf ; ~F]}B s′ : t C Γ ′′ Γ ′{w 7→ C[ut ; ~F]}B s′′ : t C Γ ′′

Γ B if (!w.m(e)) s′ else s′′ : t C Γ ′′

T-IfUnCall

Γ B w.m(e) : bool C Γ ′ Γ ′ B w : C[ε; ~F] Γ ′ B s′ : t C Γ ′′ Γ ′ B s′′ : t C Γ ′′

Γ B if (w.m(e)) s′ else s′′ : t C Γ ′′

T-If

Γ B b : bool C Γ Γ B s′ : t C Γ ′′ Γ B s′′ : t C Γ ′′

Γ B if (b) s′ else s′′ : t C Γ ′′

T-WhileCall

w , this Γ B w.m(e) : bool C Γ ′

Γ ′ B w : C[〈ut +uf 〉; ~F] Γ ′{w 7→ C[ut ; ~F]}B s′ : t C Γ ′′ Γ (w) = Γ ′′(w)

Γ B while (w.m(e)){s′} : t C Γ ′′{w 7→ C[uf ; ~F]}

T-WhileNotCall

w , this Γ B w.m(e) : bool C Γ ′

Γ ′ B w : C[〈ut +uf 〉; ~F] Γ ′{w 7→ C[uf ; ~F]}B s′ : t C Γ ′′ Γ (w) = Γ ′′(w)

Γ B while (!w.m(e)){s′} : t C Γ ′′{w 7→ C[ut ; ~F]}

T-WhileUnCall

Γ B w.m(e) : bool C Γ ′ Γ ′ B w : C[ε; ~F] Γ ′ B s : t C Γ

Γ B while (w.m(e)){s} : t C Γ ′

T-While

Γ B b : bool C Γ Γ B s : t C Γ

Γ B while (b){s} : t C Γ

Figure B.15: Revised typing rules for control flow expressions

68

T-InjL

Γ B e : t C Γ ′

Γ B e : t C 〈Γ ′ + Γ ′′〉
T-InjR

Γ B e : t C Γ ′′

Γ B e : t C 〈Γ ′ + Γ ′′〉

T-Sub

Γ B e : C[u] C Γ ′ C[u] <: C[u′]

Γ B e : C[u′] C Γ ′
T-SubEnv

Γ B e : t C Γ ′ Γ ′ <: Γ ′′

Γ B e : t C Γ ′

Figure B.16: Typing rules for subtyping

T-New

Γ B e : t′ C Γ ′ C.usage = lin{C;u} (t C(t′ x) {s},_) ∈ C.methods un(Γ ′\Γ)

Γ B new C(e) : C[u] C Γ ′

T-UnNew

Γ B e : t′ C Γ ′ C.usage = ε (t C(t′ x) {s},_) ∈ C.methods un(Γ ′\Γ)

Γ B new C(e) : C[u] C Γ ′

T-SelfCall1

Γ B e : t′ C Γ ′

Γ ′ B this : C[u; ~F] (t m(t′ x) {s},0) ∈ C.methods Γ ′ B s : t C Γ ′′ un(Γ ′\Γ)

Γ B this.m(e) : t C Γ ′′

T-SelfCall2

Γ B e : t′ C Γ ′ Γ ′ B this : C[u; ~F] (t m(t′ x) {s},1) ∈ C.methods

Γ B this.m(e) : t C Γ ′

T-Call

w , this Γ B e : t′ C Γ ′

Γ ′ B w : C[u; ~F] u.allows(m) = u′ (t m(t′ x) {s},_) ∈ C.methods un(Γ ′\Γ)

Γ B w.m(e) : t C Γ ′{w 7→ C[u′ ; ~G]}

Figure B.17: Revised typing rules for calls

69

Appendix C

Algorithm implementation in ML

C.1 Algorithm types structures

Listing C.1: ML code for the types and structures used by the algorithm

1 type stmt_type =

2 AND

3 | ASSIGN

4 | CALL

5 | CONCAT

6 | DIFF

7 | DIV

8 | EQUAL

9 | FALSE

10 | FIELD

11 | GREATER

12 | GREATEROREQUAL

13 | IF

14 | IFELSE

15 | INTEGER

16 | LESS

17 | LESSOREQUAL

18 | MINUS

19 | MULT

20 | NEW

21 | NOT

22 | NULL

23 | OR

24 | PLUS

25 | PRINTINT

26 | PRINTSTR

27 | SEQ

28 | SPAWN

29 | STRING

30 | TRUE

31 | UNIT

70

C.1. ALGORITHM TYPES STRUCTURES

32 | WHILE

33

34 type statement = {

35 stmt_type : stmt_type;

36 left_side : statement list;

37 right_side : statement list;

38 value : string

39 }

40

41 type var = {

42 var_name : string;

43 var_type : string;

44 var_usage_state : int

45 }

46

47 type action = {

48 action_name : string;

49 action_usage_state : int;

50 action_type : string;

51 action_requires : string;

52 action_ensures : string;

53 is_sync : bool;

54 parameters : var list;

55 action_body : statement list

56 }

57

58 type state = {

59 actions : action list;

60 is_choice_state : bool

61 }

62

63 type transition = {

64 state_a : state;

65 transition_label : string;

66 state_b : state

67 }

68

69 type usage_branch = {

70 action : action;

71 next_states : int list

72 } and usage_state = {

73 usage_state_id : int;

74 usage_state_shared : bool;

75 branches : usage_branch list

76 }

77

78 type mool_class = {

79 class_name : string;

80 class_usage : usage_state list;

81 class_fields : var list;

71

APPENDIX C. ALGORITHM IMPLEMENTATION IN ML

82 class_inv : string;

83 class_init : string;

84 actions : action list

85 }

86

87 type analyzed_state = {

88 id : int;

89 state : state

90 }

C.2 Prover

Listing C.2: ML code for the prover module

1 open Printf

2 open Types

3 open Input

4

5 open Unix

6

7 let file = "assertions.z3"

8 let file2 = "assertions2.z3"

9 let file3 = "assertions3.z3"

10

11 let print_assertions_to_file file_channel assertions =

12 (*Declare fields*)
13 List.iter

14 (fun field -> fprintf file_channel "%s\n" field)

15 fields;

16 (*Declare assertions*)
17 List.iter

18 (fun assertion -> fprintf file_channel "%s\n" assertion)

19 assertions;

20 fprintf file_channel "%s\n" "(check-sat)"

21

22 let prove assertions =

23 let file_channel = open_out file in

24 print_assertions_to_file file_channel assertions; close_out file_channel;

25 let res = (input_line (Unix.open_process_in "z3 assertions.z3")) in

26 if res = "sat" then true else false

27

28 let prove_variant assertions =

29 let file_channel = open_out file2 in

30 print_assertions_to_file file_channel assertions; close_out file_channel;

31 let res = (input_line (Unix.open_process_in "z3 assertions2.z3")) in

32 Sys.remove "assertions2.z3"; if res = "sat" then true else false

33

34 let rec build_assertion channel next_line =

35 match next_line with

72

C.2. PROVER

36 " :precision precise :depth 1)" -> ""

37 | "(error \"tactic failed: split-clause tactic failed, goal does not contain any

clause\")

38 " -> print_string "ERROR\n"; ""

39 | line -> line^(build_assertion channel (input_line channel))

40

41 let get_true assertion =

42 let file_channel = open_out file2 in

43 List.iter

44 (fun field -> fprintf file_channel "%s\n" field)

45 fields;

46 fprintf file_channel "%s\n" ("(assert "^assertion^")");

47

48 fprintf file_channel "%s\n" "(apply split-clause)"; close_out file_channel;

49 let channel = (Unix.open_process_in "z3 assertions2.z3") in

50 input_line channel; input_line channel;

51 "(and "^(build_assertion channel "")^")"

52

53 let get_false assertion =

54 let file_channel = open_out file2 in

55 List.iter

56 (fun field -> fprintf file_channel "%s\n" field)

57 fields;

58 fprintf file_channel "%s\n" ("(assert "^assertion^")");

59

60 fprintf file_channel "%s\n" "(apply split-clause)"; close_out file_channel;

61 let channel = (Unix.open_process_in "z3 assertions2.z3") in

62 input_line channel; input_line channel; (build_assertion channel "");

input_line channel;

63 "(and "^(build_assertion channel "")^")"

64

65 let get_variant assertion state =

66 let file_channel = open_out file2 in

67 List.iter

68 (fun field -> fprintf file_channel "%s\n" field)

69 fields;

70 fprintf file_channel "%s\n" assertion;

71

72 fprintf file_channel "%s\n" "(apply split-clause)"; close_out file_channel;

73 let channel = (Unix.open_process_in "z3 assertions2.z3") in

74 input_line channel; input_line channel;

75

76 let assertion_left = "(assert (and "^(build_assertion channel "")^"))\n" in

77 input_line channel;

78 let assertion_right = "(assert (and "^(build_assertion channel "")^"))\n" in

79 List.exists

80 (fun action -> (prove_variant [assertion_left; "(assert "^action.

action_requires^")"]) && (not (prove_variant [assertion_right; "(assert

"^action.action_requires^")"])))

81 state

73

APPENDIX C. ALGORITHM IMPLEMENTATION IN ML

82

83 let has_two_states action =

84 String.sub action.action_ensures 0 3 = "(or"

85

86 let changes_state action =

87 if(action.action_requires = action.action_ensures)

88 then false

89 else

90 (let file_channel = open_out file3 in

91 List.iter

92 (fun field -> fprintf file_channel "%s\n" field)

93 fields;

94 fprintf file_channel "%s\n" ("(assert "^action.action_ensures^")");

95

96 fprintf file_channel "%s\n" "(apply split-clause)"; close_out file_channel;

97 let channel = (Unix.open_process_in "z3 assertions3.z3") in

98 if ((input_line channel) = "(error \"tactic failed: split-clause tactic

failed, goal does not contain any clause\")")

99 then not (prove ["(assert "^(action.action_requires)^")"; "(assert "^action.

action_ensures^")"])

100 else (input_line channel;

101 let assertion_left = "(assert (and "^(build_assertion channel "")^"))\n" in

102 input_line channel;

103 let assertion_right = "(assert (and "^(build_assertion channel "")^"))\n"

in

104 not (prove ["(assert "^(action.action_requires)^")"; assertion_left])

|| not (prove ["(assert "^(action.action_requires)^")";

assertion_right])))

C.3 Stage 1 algorithm

Listing C.3: ML code for the first stage of the algorithm

1 let build_state class_inv a actions =

2 let initial_actions = List.filter

3 (fun action -> Prover.prove ["(assert "^class_inv^")"; "(assert "^a^")"; "(

assert "^action.action_requires^")"])

4 actions in

5 {actions = initial_actions; is_choice_state = false}

6

7 let generate_choice_state action =

8 let dummy_action = {action_name = (action.action_name^"_choice");

9 action_type = "unit";

10 action_usage_state = -1;

11 action_requires = "";

12 action_ensures = "";

13 is_sync = false;

14 parameters = [];

15 action_body = []} in {actions = [dummy_action]; is_choice_state = true}

74

C.4. STAGE 2 ALGORITHM

16

17

18 let build_transitions class_inv class_init actions action_a state_a =

19 if action_a.action_type = "boolean" && Prover.has_two_states action_a

20 then

21 let next_state_true = (build_state class_inv (Prover.get_true action_a.

action_ensures) actions) and

22 next_state_false = (build_state class_inv (Prover.get_false action_a.

action_ensures) actions) in

23 [{state_a = state_a; transition_label = action_a.action_name; state_b =

generate_choice_state action_a};{state_a = generate_choice_state action_a;

transition_label = "true"; state_b = next_state_true}; {state_a =

generate_choice_state action_a; transition_label = "false"; state_b =

next_state_false}]

24 else

25 if (not (Prover.changes_state action_a))

26 then [{state_a = state_a; transition_label = action_a.action_name; state_b =

state_a}]

27 else let next_state = (build_state class_inv action_a.action_ensures actions) in

28 [{state_a = state_a; transition_label = action_a.action_name; state_b =

next_state}]

29

30

31 let rec analyse_state class_inv class_init actions w states delta =

32 match w with

33 [] -> delta

34 | state::w ->

35 if (not (List.exists (fun s -> s = state) states) && not state.is_choice_state

)

36 then let transitions = List.flatten (List.map

37 (fun a -> build_transitions class_inv class_init actions a state)

38 state.actions) in

39 analyse_state class_inv class_init actions (List.append w (List.map (fun t

-> t.state_b) transitions)) (List.append states [state]) (List.append

delta transitions)

40 else analyse_state class_inv class_init actions w states delta

41

42

43

44 let generate_typestate class_inv class_init actions =

45 let initial_state = (build_state class_inv class_init actions) in

46 analyse_state class_inv class_init actions [initial_state] [] []

C.4 Stage 2 algorithm

Listing C.4: ML code for the second stage of the algorithm

1 let rec build_state_set states analysed_states =

2 match states with

75

APPENDIX C. ALGORITHM IMPLEMENTATION IN ML

3 [] -> analysed_states

4 | state::states -> let is_analysed = List.exists (fun s -> s.state = state)

analysed_states in

5 if is_analysed then build_state_set states analysed_states

6 else build_state_set states (List.append analysed_states [{id = (List.length

analysed_states); state = state}])

7

8 let rec get_shared_status usage_state_id branches =

9 List.for_all

10 (fun b -> List.length b.next_states < 2 && List.hd b.next_states = usage_state_id)

11 branches

12

13 let get_next_state state action delta =

14 List.hd (List.map (fun t -> t.state_b) (List.filter (fun t -> t.state_a = state &&

t.transition_label = action.action_name) delta))

15

16 let get_decision_transition state_a label delta =

17 List.find (fun t -> t.state_a = state_a && t.transition_label = label) delta

18

19 let generate_branches analysed_state analysed_states state delta =

20 List.map

21 (fun a -> let next_state = get_next_state state a delta in

22 if next_state.is_choice_state

23 then let true_transition = get_decision_transition next_state "true" delta and

false_transition = get_decision_transition next_state "false" delta in

24 ({action = a; next_states = [(List.find (fun s -> s.state = true_transition.

state_b) analysed_states).id; (List.find (fun s -> s.state =

false_transition.state_b) analysed_states).id]})

25 else if next_state.actions = [] then {action = a; next_states = [-1]}

26 else {action = a; next_states = [(List.find (fun s -> s.state = next_state)

analysed_states).id]}) state.actions

27

28 let rec generate_usage analysed_states states delta usage =

29 match states with

30 [] -> usage

31 | state::states -> let analysed_state = List.find (fun s -> s.state = state)

analysed_states in

32 let branches = generate_branches analysed_state analysed_states state delta in

33 List.append

34 [{

35 usage_state_id = analysed_state.id;

36 usage_state_shared = get_shared_status analysed_state.id branches;

37 branches = branches

38 }]

39 (generate_usage analysed_states states delta usage)

40

41 let rec check_usage usage_1 usage_2 =

42 match usage_1 with

43 [] -> usage_2

76

C.5. STAGE 3 ALGORITHM

44 | u::usage_1 -> if (u.usage_state_shared = true && (List.exists (fun b -> List.

length b.next_states = 2 || (List.find (fun next_state -> next_state.

usage_state_id = List.hd b.next_states) usage_2).usage_state_shared = false)

u.branches)) then

45 raise (Failure "Incorrect usage")

46 else check_usage usage_1 usage_2

47

48 let rec annotate_classes input_classes output_classes =

49 match input_classes with

50 [] -> output_classes

51 | c::input_classes ->

52 let delta = generate_typestate c.class_inv c.class_init (List.filter (fun

action -> action.action_name <> c.class_name) c.actions) in

53 let states = List.filter (fun s -> not s.is_choice_state) (List.map (fun t ->

t.state_a) delta) in

54 let analysed_states = (build_state_set states []) in

55 let usage = (generate_usage analysed_states (List.map (fun s -> s.state)

analysed_states) delta []) in

56 let new_class = {class_name = c.class_name; class_usage = check_usage

usage usage; class_fields = c.class_fields; class_inv = c.class_inv;

class_init = c.class_init; actions = c.actions} in

57 annotate_classes input_classes (List.append output_classes [new_class

])

C.5 Stage 3 algorithm

Listing C.5: ML code for the third stage of the algorithm

1 let is_primitive_type t =

2 match t with

3 "void" -> true

4 | "boolean" -> true

5 | "int" -> true

6 | "string" -> true

7 | _ -> false

8

9 let rec get_parameter_usage_state_2 usage action =

10 match usage with

11 [] -> -1

12 | usage_state::usage -> if (List.for_all (fun b -> Prover.prove [("(assert "^

action.action_requires^")"); ("(assert "^b.action.action_requires^")")])

usage_state.branches) then usage_state.usage_state_id else

get_parameter_usage_state_2 usage action

13

14 let rec get_parameter_usage_state_1 classes parameter action =

15 match is_primitive_type parameter.var_type with

16 true -> -1

17 | false -> let usage = (List.find (fun c -> c.class_name = parameter.var_type)

classes).class_usage in

77

APPENDIX C. ALGORITHM IMPLEMENTATION IN ML

18 get_parameter_usage_state_2 usage action

19

20 let rec annotate_parameters classes action input_parameters output_parameters =

21 match input_parameters with

22 [] -> output_parameters

23 | p::input_parameters ->

24 let new_parameter = {var_name = p.var_name; var_type = p.var_type;

var_usage_state = (get_parameter_usage_state_1 classes p action)} in

25 annotate_parameters classes action input_parameters (List.append

output_parameters [new_parameter])

26

27 let rec get_action_usage_state_2 usage action =

28 match usage with

29 [] -> -1

30 | usage_state::usage -> if (List.for_all (fun b -> Prover.prove [("(assert "^

action.action_ensures^")"); ("(assert "^b.action.action_requires^")")])

usage_state.branches) then usage_state.usage_state_id else

get_action_usage_state_2 usage action

31

32 let rec get_action_usage_state_1 classes action =

33 match is_primitive_type action.action_type with

34 true -> -1

35 | false -> let usage = (List.find (fun c -> c.class_name = action.action_type)

classes).class_usage in

36 get_action_usage_state_2 usage action

37

38 let rec annotate_actions classes input_actions output_actions =

39 match input_actions with

40 [] -> output_actions

41 | a::input_actions ->

42 let new_parameters = annotate_parameters classes a a.parameters [] in

43 let new_action = {action_name = a.action_name; action_usage_state = (

get_action_usage_state_1 classes a); action_type = a.action_type;

action_requires = a.action_requires; action_ensures = a.action_ensures;

is_sync = a.is_sync; parameters = new_parameters; action_body = a.

action_body} in

44 annotate_actions classes input_actions (List.append output_actions [new_action

])

45

46 let get_field_usage_state_from_param parameters param_name =

47 let p = List.hd (List.filter (fun f -> f.var_name = param_name) parameters) in

48 p.var_usage_state

49

50 let get_field_usage_state_from_call classes actions class_name action_name =

51 let c = List.find (fun c -> c.class_name = class_name) classes in

52 let a = List.hd (List.filter (fun a -> a.action_name = action_name) c.actions)

in

53 a.action_usage_state

54

55 let rec detect_attributions_2 classes fields actions parameters s output_fields=

78

C.5. STAGE 3 ALGORITHM

56 match s with

57 {stmt_type = ASSIGN; left_side = [s1]; right_side = [{stmt_type = FIELD;

left_side = []; right_side = []; value = v}]} ->

58 let field = List.find (fun f -> f.var_name = s1.value) fields in

59 output_fields@[{var_name = field.var_name; var_type = field.var_type;

var_usage_state = (get_field_usage_state_from_param parameters v)}]

60 | {stmt_type = ASSIGN; left_side = [s1]; right_side = [{stmt_type = CALL;

left_side = [s2]; right_side = [s3]; value = v}]} ->

61 let field = List.find (fun f -> f.var_name = s1.value) fields in

62 output_fields@[{var_name = field.var_name; var_type = field.var_type;

var_usage_state = (get_field_usage_state_from_call classes actions s2.

value s3.value)}]

63 | {stmt_type = CALL; left_side = [s1]; right_side = [s2]} ->

64 let old_parameter = List.find (fun p -> p.var_name = s1.value) parameters in

65 let new_parameter = {var_name = old_parameter.var_name; var_type =

old_parameter.var_type; var_usage_state = old_parameter.var_usage_state}

in

66 let new_parameters = (List.filter (fun p -> p = old_parameter) parameters)@

[new_parameter] in

67 detect_attributions_2 classes fields actions new_parameters s1

output_fields

68 | {stmt_type = IF; left_side = [s1]; right_side = []} -> detect_attributions_2

classes fields actions parameters s1 output_fields

69 | {stmt_type = IFELSE; left_side = [s1]; right_side = [s2]} ->

detect_attributions_2 classes fields actions parameters s2 (

detect_attributions_2 classes fields actions parameters s1 output_fields)

70 | {stmt_type = SEQ; left_side = [s1]; right_side = [s2]} ->

detect_attributions_2 classes fields actions parameters s2 (

detect_attributions_2 classes fields actions parameters s1 output_fields)

71 | {stmt_type = SPAWN; left_side = [s1]} -> detect_attributions_2 classes fields

actions parameters s1 output_fields

72 | {stmt_type = WHILE; left_side = [s1]; right_side = []} ->

detect_attributions_2 classes fields actions parameters s1 output_fields

73 | _ -> output_fields

74

75

76 let rec detect_attributions_1 classes fields actions parameters stmts output_fields

=

77 match stmts with

78 [] -> output_fields

79 | s::stmts -> let new_output_fields = detect_attributions_2 classes fields

actions parameters s [] in

80 detect_attributions_1 classes fields actions parameters stmts

new_output_fields

81

82 let rec annotate_fields classes fields actions output_fields =

83 match actions with

84 [] -> output_fields

85 | a::actions -> detect_attributions_1 classes fields actions a.parameters a.

action_body [];

79

APPENDIX C. ALGORITHM IMPLEMENTATION IN ML

86 output_fields

87

88 let rec get_object_usage_states input_classes output_classes =

89 match input_classes with

90 [] -> output_classes

91 | c::input_classes ->

92 let new_actions = annotate_actions (input_classes@output_classes@[c]) c.

actions [] in

93 let new_fields = annotate_fields (input_classes@output_classes@[c]) c.

class_fields new_actions [] in

94 let new_class = {class_name = c.class_name; class_usage = c.class_usage;

class_fields = new_fields; class_inv = c.class_inv; class_init = c.

class_init; actions = new_actions} in

95 get_object_usage_states input_classes (List.append output_classes [

new_class])

80

	List of Figures
	Listings
	Introduction
	Contributions
	Thesis outline

	Related work
	Deductive proof systems
	Model checking
	Types and type systems
	Type-checking
	Type inference

	Behavioural types and type systems
	Typestates
	Session types

	Session type inference

	A Revision of the Mool Language
	The original Mool language
	Minor errors and limitations
	Major errors and limitations

	Latest Mool implementation
	Testing the formalization
	Racket
	PLT Redex

	PLT Redex implementation of the original formalization
	The revised Mool language
	Revised syntax
	Revised operational semantics
	Revised type system

	PLT Redex implementation of the revised Mool formalization

	Behavioural type inference
	Mool-
	Example: Blog
	Usage inference algorithm
	Stage 1: Typestate generation
	Stage 2: Usage generation
	Stage 3: Object usage state inference

	ML implementation

	Conclusions
	Summary
	Future work

	Bibliography
	Reduction graphs in Racket
	Revised Mool syntax and rules
	Algorithm implementation in ML
	Algorithm types structures
	Prover
	Stage 1 algorithm
	Stage 2 algorithm
	Stage 3 algorithm

