
From Object-Oriented Code with Assertions
to Behavioural Types

Cláudio Vasconcelos
NOVA LINCS and DI-FCT, Univ. NOVA de Lisboa

António Ravara
NOVA LINCS and DI-FCT, Univ. NOVA de Lisboa

ABSTRACT
The widespread use of service-oriented and cloud computing
is creating a need for a communication-based programming
approach to distributed concurrent software systems. Pro-
tocols play a central role in the design and development of
such systems but mainstream programming languages still
give poor support to ensure protocol compatibility. Test-
ing alone is insufficient to ensure it, so there is a pressing
need for tools to assist the development of these kind of
systems. While there are tools to verify statically object-
oriented code equipped with assertions, these mainly help
to prevent runtime errors. However, a program can be ill-
behaved and still execute without terminating abruptly. It is
important to guarantee that the code implements correctly
its communication protocol. Our contribution is a tool to
analyse source code written in a subset of Java, equipped
with assertions, and return it annotated with its respective
behavioural types that can be used to verify statically that
the code implements the intended protocol of the applica-
tion. A running example illustrates each step of the tool.

Keywords
Assertions; behavioural types; object-oriented programming

1. INTRODUCTION
Communication protocols play a central role in the design
and development of distributed concurrent software systems,
which are these days communication-based, not only due
to running in multi-core architectures, but also due to the
widespread use of service-oriented and cloud computing.

Concurrent programming is very challenging; developing dis-
tributed protocol-based applications is not only quite elab-
orat, but also error-prone due to how hard it is to reason
about the behaviour of a multi-threaded program [14, 9].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permis-
sions@acm.org.
SAC’17, April 3-7, 2017, Marrakesh, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

As Dijkstra stated, ”Program testing can at best show the
presence of errors but never their absence” [6, 7]. It is nec-
essary to develop techniques that help to create safe and
well-behaved systems, such as tools to assist us while prov-
ably providing correctness guarantees, or extensions of pro-
gramming languages with constructs to specify the intended
behaviour and to ensure that it is followed. It is important
that these techniques allow programmers to test their sys-
tems while developing them instead of testing only at the
end, which can be complicated.

There are many approaches to guarantee code correctness
but we are interested in analysing the source code and assist-
ing the developer by identifying errors in the development
phase. We are also interested in more than safety proper-
ties, as the absence of run-time errors does not imply that an
application is well-behaved. Consider, for instance, an API
to manipulate files, providing functionalities to open, close,
read, write, and test emptiness. Obviously, there is a usage
protocol underlying such API: on first opens the file; before
reading one should test for (non-)emptiness, and once the
work is done, one should close the file. Guaranteeing (stat-
ically) that the code never goes wrong does not ensure its
”usefulness”. An important (liveness) property is that client
code using the API should always follow its protocol.

The aim of our work is to bridge the world of programming
in Java with assertions1 with the world of behavioural typed
programming [13, 1], in particular in Java. While the for-
mer is becoming increasingly popular and well supported
(being part of the Java language for more than a decade
now), the latter has a growing impact and will probably
soon be incorporated into mainstream languages. We ar-
gue that programming using behavioural types can be, in
most cases, easier than programming with assertions, be-
cause they can be more intuitive to write, informative and
easier to check, but right now the properties guaranteed by
type systems and assertions complement each other. For ex-
ample, current type systems do not guarantee the absence
of NullPointerExceptions.

We developed an algorithm to convert Java with assertions
in a form of behavioural types (henceforth called usage, a
textual representation of a finite automata). Usages repre-
sent all the safe sequences of method calls and are (enhanced
forms of) class types, checkable at compile-time.

1http://docs.oracle.com/javase/7/docs/technotes/guides/
language/assert.html

In a nutshell, our approach is the following: given a pro-
gram written in a subset of Java, fully annotated with asser-
tions that we consider correct, returns its usage. The goal
is to provide developers with abstractions extracted from
the code to represent its behaviour. Furthermore, these ab-
stractions can be attached to the code and statically verified,
ensuring also its correctness.

2. RELATED WORK
We build on a consolidated body of work on behavioural
static analysis of concurrent systems.

2.1 Behavioural types and type systems
Behavioural types allow the specification of interaction pat-
terns of processes through expressive type languages. In be-
havioural type systems, the type-checker can statically ver-
ify these behavioural types and prove that these interaction
patterns they specify are safe [13].

2.1.1 Typestates
Typestates are an extension of the concept of type that
makes it possible to define which operations are allowed in
a particular context, helping to detect at compilation time,
particularly during type-checking, unexpected sequences of
operations (like reading a file after closing it) [17].

Damiani et al. propose to include in Java-like languages
a feature to declare state dependent object behaviour [5].
Using a type and effect system, the authors ensure that,
during the execution of a method call there are no re-entrant
calls nor access to un-initialised fields.

Garcia et al. presented the concept of typestate-oriented
programming, which consists on the extension of object-
oriented programming with the notion of typestate [10]. In
typestate-oriented programming each state is represented by
a class, with each of these classes having their own repre-
sentation and methods. In this context, the class of the ob-
ject represents its typestate, which can dynamically change
during runtime. Aldrich also developed the Plaid language,
a typestate-programming language that uses these founda-
tions as its core [16].

2.1.2 Session types
Session types are an instance of behavioural types devel-
oped by Honda et al. [12], aiming at guaranteeing consistent
communication patterns never leading to runtime errors.

Session types were neatly integrated into object-oriented
programming languages (as shown in a recent report [1]).

2.2 Behavioural type inference
There are several proposals that aim for session-type in-
ference of programs written without explicit session types.
Hüttel et al. present an approach to session type inference
for the π-calculus based on constraint generation and solv-
ing [11], but they argue that it should be possible to adapt
the work for other programming languages since these con-
straints are present in other languages with binary session
types. Previously, Padovani showed how to encode session

types into linear types and defined a type reconstruction
algorithm [15].

Caso, Braberman, Garbervetsky and Uchitel present the
idea of generating abstract behavioural models, which are
similar to typestates [3]. We use the latter approach as one
of the basis of the work presented herein.

3. THE MOOL LANGUAGE
The Mool programming language is a Java-like language
that integrates a form of behavioural types based on ses-
sion types into an object-oriented language [2]. In Mool
each class has a behavioural type (called a usage) associated
that specifies safe orderings of method calls. A static type-
checking system verifies if the code adheres to the usages of
the classes.

We want to infer the usage from the source code, instead of
making the programmer write it for each class. Although we
leave formal proofs for future work, the tool developed pro-
duce usages that, if associated to the classes of the analysed
source code, should type-check in the Mool compiler.

The target language for our behavioural type inference tool
is a variation of Mool which we call Mool−.2 It differs from
the original version in two aspects: (1) it is based on a re-
vised version of the language [18] that sol some bugs and
extends expressiveness, and (2) differs from that version by
not having usages and instead allowing to annotate classes
with assertions. With these assertions, programmers can
specify the expected state of an object during its existence
through invariants, and also specify the state of the object
before and after a method execution.

4. BLOG EXAMPLE
The running example we use herein is based on a blog sce-
nario. Due to the lack of collections in Mool (it is a proof-
of-concept language), we assume that this blog can contain
only one post. There are two types of users:

Admin Can create, remove, and publish a post. The admin
can remove a post only if it has not been published
before.

Viewer Can view a published post.

Listing 1 shows the Post class. Since the access control to
a Post object is done by the Blog object, it can have its
only method available at any time, which explains why every
assertion is true.

Listing 2 shows the Viewer class. When initialised, a session
is created and it can be closed at any time. The viewer must
request the post, which will save the post locally. The viewer
must be able to request a post right after initialisation.

Listing 3 shows the Blog class. When a blog is initialised it
does not have a post so a new one must be created. After
creating a new post it can be removed or it can be published,
making it public to the viewers and blocking any write op-
eration on it.
2The syntax of Mool− is available at http://usinfer.
sourceforge.net/mool minus syntax.pdf

class Post {

string title; string body;

//@ invariant true;
//@ initial true;
void Post(string t, string c) {...}

//@ requires true;
//@ ensures true;
string readPost () {...}

}

Listing 1: Code for the Post class

class Viewer {

Blog blog; Post post;
boolean has_post; boolean session;

//@ invariant true;
//@ requires b.postIsPublic ();
//@ initial post == null && blog != null && session

;
void Viewer(Blog b) {...}

//@ requires !has_post && session;
//@ ensures (blog != null && session) && (| result|

-> post != null);
boolean requestPost () {

if(blog.postIsPublic ()) {
post = blog.viewPost (); true;

} else {...}
}

//@ requires post != null && blog != null &&
session;

//@ ensures post != null && blog != null && session
;

void readPost () {...}

//@ requires blog != null && session;
//@ ensures blog != null && !session;
void endSession () { session = false; }

}

Listing 2: Code for the Viewer class

class Blog {

Post post; boolean is_public;

//@ invariant true;
//@ initial !is_public && post == null;
void Blog() { ... }

//@ requires !is_public && post == null
&& p != null;

//@ ensures !is_public && post != null;
void newPost(string title , string body) { post =

new Post(title , body); }

//@ requires !is_public && post != null;
//@ ensures !is_public && post == null;
void deletePost () { post = null; }

//@ requires true;
//@ ensures |result| -> post != null;
boolean hasPost () { post != null; }

//@ requires true;
//@ ensures |result| -> is_public;
boolean postIsPublic () { post != null; }

//@ requires is_public && post != null;
//@ ensures is_public && post != null;
sync Post viewPost () { ... post; }

//@ requires !is_public && post != null;
//@ ensures is_public && post != null;
void publishPost () { is_public = false; }

}

Listing 3: Code for the Blog class

5. USAGE INFERENCE TOOL
In this section we describe the usage inference tool, adapted
to our target language. This tool receives a program com-
posed by classes written in Mool− and returns those same
classes as code written in Mool, i.e., without assertions and
annotated with their respective usages. The tool works
through three stages, with the first two based on existing
work, which we adapted to fulfil the requirements of our
target language. The first stage extracts the typestates of
each Mool− class, which are then translated into usages in
the second stage, and finally the third stage defines the us-
age state each object starts in. For each stage we provide
the output for the example presented in section 4 to exem-
plify what to expect from each. We make available the full
ML code of each stage of our algorithm.3

5.1 Stage 1: Typestate generation
In this first stage of the usage inference tool we use the
behavioural model approach of Caso et al. [3]. This ap-
proach consists on an algorithm that receives the source code
of a program equipped with assertions that represent in-
variants and requires clauses and constructs automatically
a enabledness-preserving behaviour model, which is simi-
lar to a typestate. These behaviour models are permissive,
meaning that they include every possible operation sequence
of the program. The authors of the original algorithm we
adapted argue that their technique ensures that the con-
structed behaviour models are always permissive indepen-
dently of the library’s internal state being finite or not.

We made a few changes to the algorithm to fit it to our
target language. The first concerns checking the validity of
the assertions. In their presentation of the algorithm [3], the
authors suggest using code reachability to do the required
validity checks, arguing that their implementation does not
use a theorem prover due to the lack of postconditions. We,
however, decided to include postconditions in our language
and the init clause that represents the state of the object
after its initialization. Therefore, we are able to use a the-
orem prover (Z34) to check the validity of the assertions in
first-order logic.

The second important change is related to non-determinism.
The original algorithm allows non-deterministic transitions,
depending on the internal state of the program. Since, as
usual in a programming language, Mool does not support
non-determinism, we also adapted the original algorithm in
this respect. Mool allows transitions to have, at most, two
target states, with these being based on choice, which are
represented in usages through variant types. These transi-
tions can only be triggered by a boolean method and they
rely on its result to choose the next state, hence the two
target state limit for each transition.

For the algorithm to allow transitions based on choice (ac-
cording to the result of a boolean method), it needs to know
what state to choose if the result is true and what state to
choose if the result is false. For example, consider a File class
that follows the protocol defined in Figure 5.1. The transi-

3https://sourceforge.net/p/usinfer/code/ci/master/tree/
ml/.
4https://github.com/Z3Prover/z3/wiki

Q1start

Q2

Q3 Q4

eof

read

eof

close

Figure 5.1: Non-deterministic behaviour a File class

Q1start Ch

Q3

Q4 Q5

eof

false

true

read

close

Figure 5.2: Behaviour a File class

tion relation δ is expected to include the triples (Q1,eof,Q2)
and (Q1,eof,Q3), since δ needs to include a transition cor-
responding to the case when the method eof returns true
and another transition corresponding to the case when the
method eof returns false. We explicitly need to know which
target state corresponds to what result since we cannot rely
on the order of how they are presented (in the previous ex-
ample, the choice that corresponds to the false result is pre-
sented first). In our algorithm the transition relation is as
function defined as in Figure 5.2.

Such transition function is defined by the object state that
causes the method to return true and the object state that
causes the method to return false. So, in these situations,
the post-condition of the method that triggers the transition
must specify both states.

Therefore, our algorithm returns, for each class, a state ma-
chine representing its typestate. Figures 5.3, 5.4 and 5.5
show a graphical representation of the generated typestates
for the classes of the example presented in Section 4.

Q1

readPost

Figure 5.3: Typestate
for the Post class

Q1

Q2Q3

requestPost

requestPost

endSession

readPost
endSession

Figure 5.4: Typestate
for the Viewer class

The state machines returned by the first phase of the algo-
rithm represent all the possible sequences of method calls of
a given class. We still need to convert them in usages, the
syntactic terms used as class types in Mool, which are like
regular expressions. We describe this step in the following
section.

Q1start Q2 Q3

postIsPublic, hasPost

newPost

postIsPublic,
hasPost publishPost

blockPage
viewPost,

postIsPublic, hasPost

Figure 5.5: Typestate for the Blog class

usage lin{Post; Q1} where
Q1 = un{readPost; Q1};

Listing 4: Code for the Post class usage

5.2 Stage 2: Usage generation
The second stage of our algorithm consists thus on obtaining
usages from the typestates obtained from the first phase.
To do this we will use the idea presented by Collingbourne
and Kelly [4], which consists on a three-stage algorithm that
receives code from a very simple language similar to C and
produces a session type from it.

Although the technique itself infers session types directly
from code, it is defined to work on a limited language that
lacks object and concurrency support, two important as-
pects of our target language. If we were to adapt it to our
target language we would need to extend it with the missing
features. Instead of doing such extension, we adapted the
algorithm of Caso et al. [3].

Therefore, we are only going to use the third stage of Colling-
bourne and Kelly’s algorithm, where it receives a state ma-
chine, converts it into a deterministic state machine, and ap-
plies a function that translates it into a session type. Since
Mool has usages and not session types we need to adapt
the function so that it translates state machines to usages
instead. However, the conversion of non-deterministic state
machines to deterministic ones, in our case that, instead of
non-determinism in supports choice, would allow unwanted
behaviour. Instead of following Collingbourne and Kelly’s
approach in this respect, we need to introduce variant types.
Determining which target transition corresponds to which
boolean value is done using the information given by the
new transition function presented in the previous stage.

Finally, since Mool supports shared and linear objects, the
latter with behaviour captured in usage types and the former
with behaviour captured in “standard” class types, we added
a mechanism that ensures the generated usage does not have
transitions that go from a shared state to a non-shared state
or a non-equivalent non-shared state, i.e., a non-shared state
that offers a different set of methods.

In short, this second phase of our algorithm is loosely in-
spired by that of Collingbourne and Kelly, but has impor-
tant modifications. To illustrate this phase of our algorithm,
consider listings 4, 5 and 6. Each presents the usage type
corresponding, respectively, to the typestates in Figures 5.3,
5.4, and 5.5. These usages were obtained by the algorithm
from the typestates generated in the previous phase of the
algorithm.

usage lin{Viewer; Q1} where
Q1 = lin{endSession; end +

requestPost; <Q2 + Q1 >}
Q2 = lin{endSession; end +

readPost; Q2};

Listing 5: Code for the Viewer class usage

usage lin{Blog; Q1} where
Q1 = lin{postIsPublic; Q1 + hasPost; Q1 + newPost;

Q2}
Q2 = lin{publishPost; Q3 + postIsPublic; Q2 +

hasPost; Q2 + deletePost; Q1}
Q3 = un{viewPost; Q3 + postIsPublic; Q3 + hasPost;

Q3};

Listing 6: Code for the Blog class usage

5.3 Stage 3: Object usage state inference
The previous stage generated usage types for classes. We
still need to generated usage types for the declarations of
fields, parameters and method return types, when these ma-
nipulate objects.

Mool offers the possibility of indicating the usage state an
object starts in its declaration. Consider the following ex-
cerpt of the Viewer class:

class Viewer {
...
Blog[Q3] blog;
...

}

We want the blog field to be initialised in a state where the
viewer can request a post right away which, according to the
generated usage for the Blog class in listing 3, corresponds
to the usage state Q3, as indicated in the declaration of the
blog field.

In the context of our work, we do not expect the program-
mer to know beforehand the states that will compose the
generated usage, so the programmer does not have a way to
indicate the usage state of an object when initialised. Al-
though, we can expect the programmer to know the overall
state of an object when initialised and be able to express it
through assertions.

It is possible to express the expected state of the instance re-
ceived as a parameter in the precondition of the method. In
this case, since the field blog is initialised in the constructor
with an object passed as an argument, we can specify the
usage state of blog by defining the constructor as follows:

In the requires clause we call the method postIsPublic on the
parameter b, stating that b must have the post available for
the viewer.

In Mool one can also define the usage state of an object
returned by a method. The method viewPost of the Blog
class returns the field post, an instance of the Post. Since
we want the object post to be initialised, we should specify
the return type of the method as follow:

sync Post[Q1] viewPost () {
...
post;

}

This usage state can be inferred using the method postcon-
dition, where it is possible to express the expected state of
the returned object. For this example, since the usage state
Q1 corresponds to the state where the object of type Post
is initialised, we can just specify that the returned object is
not null.

//@ requires is_public && post != null;
//@ ensures is_public && post != null;
sync Post viewPost () {

...
post;

}

All these tasks are done by an algorithm that goes through
all the methods of each class and does the following:

Step 1 Checks for parameters containing objects. The al-
gorithm uses the precondition of the method to de-
termine their state. In this context only the premises
related to the parameters being verified are considered.

Step 2 Checks the return type of the method. If it is
a class, the algorithm uses the postcondition of the
method to determine the usage state of the return
type. Again, only the premises related to the class
field or local variable being returned by the method
are considered.

Step 3 Analyses the code of the method and checks where
are the fields initialised. For every initialisation value,
the algorithm sets the usage state of the field with the
same usage state of the value. Moreover, since the
object used as the initialising value can be manipu-
lated before being assign to the field, the algorithm
also checks the calls on that object and keeps track of
the its current usage state.

The final result of the algorithm is thus usage types for each
class and each field, parameter, or result class type, in the
form used by Mool5.

One can thus then test the correctness of the resulting code
using Mool’s type-checking system, looking for, apart from
data-errors, flow errors like protocol compatibility, comple-
tion, and null de-referencing. Notice that if the program
type-checks, the program is provably free of such errors
(Mool’s type system is safe).

6. CONCLUSIONS AND FURTHER WORK
In this paper we present a behaviour type inference approach
for a Java-like language called Mool. The reason we we
choose to work with a small language instead of standard
Java because right now behavioural type do not cope with
features such as generics and collections. The algorithm
takes a program fully annotated with assertions6 and either
fails: the code is not well-typed (in the standard sense) or it
may produce a run-time error due to calling methods in an
incorrect order ; or returns a new version of the code with the
classes annotated with behavioural types (called usages).

5A more detailed execution of the algorithm is available at
http://usinfer.sourceforge.net/algorithm details.pdf.
6We check with Z3 that the assertions are logically valid.

Usage types can then be statically checked to verify if the
code is data-safe and flow-safe: there will be no (null pointer)
exceptions, no methods called when they are not supposed
to, and moreover, that the protocols of critical resources are
fully executed. In a nutshell, usage types ensure safe inter-
operability, which in this case means object compatibility:
all inter-object method calls are valid and happen at a time
where the state of the object allows those calls.

Notice that statical behavioural type-checking is a way of
automatically ensure the correctness of the assertions (thus
obviating the burden of using Hoare logic to manually –
even if machine-assisted – do it). Nonetheless, as usual
in static analyses methods, our approach is incomplete. In
some cases, the assertions may be correct but type-checking
fails. the ”problem” is that assertions talk explicitly about
state but usages only refer it implicitly. We need the variant
types to link state-based decisions with typestates. So, if the
assertions are not informative enough, we infer a wrong or
incomplete usage and type-checking fails.

We implemented the algorithms described herein, making
them available in Sourceforge7, along with a set of four ex-
amples (FileReader, Auction, Petition and Blog) we used to
test it.The tool starts by generating a state machine rep-
resenting a typestate, based on the assertions on the code.
The tool then translates the generated typestates into us-
ages. In the end, it defines the usage state that each object
of the class starts with by using the assertions and the us-
ages obtained in the previous stage. This tool is composed
by three algorithms, with the first two adapted from algo-
rithms presented in other works [3, 4], and the third one
being original.

Future work will include developing correctness proofs for
the algorithms (the ML version, being purely functional, of-
fers a good basis for machine-assisted proofs using Why3 [8])
and automatically inferring assertions to the code (we are
interested in postcondition inference using Hoare logic).

7. ACKNOWLEDGEMENTS
This research was partially supported by UK EPSRC grant
EP/K034413/1 From Data Types to Session Types: A Basis
for Concurrency and Distribution, and by FCT/MCTES un-
der NOVA LINCS strategic project UID/CEC/04516/2013.

8. REFERENCES
[1] D. Ancona, V. Bono, M. Bravetti, J. Campos, P.-M.

Deniélou, N. Gesbert, E. Giachino, R. Hu, E. B.
Johnsen, F. Martins, F. Montesi, R. Neykova, V. T.
Vasconcelos, and N. Yoshida. Behavioral types in
programming languages. Foundations and Trends in
Programming Languages, 3(2–3):95–230, 2016.

[2] J. Campos. Linear and shared objects in concurrent
programming. Master’s thesis, Univ. of Lisbon, 2010.

[3] G. D. Caso, V. Braberman, D. Garbervetsky, and
S. Uchitel. Enabledness-based program abstractions
for behavior validation. ACM Transactions on
Software Engineering and Methodology, 22(3):1–46,
2013.

7http://usinfer.sourceforge.net.

[4] P. Collingbourne and P. H. J. Kelly. Inference of
session types from control flow. Electronic Notes in
Theorectical Computer Science, 238(6):15–40, 2010.

[5] F. Damiani, E. Giachino, P. Giannini, and
S. Drossopoulou. A type safe state abstraction for
coordination in Java-like languages. Acta Informaticæ,
45(7-8):479–536, 2008.

[6] E. W. Dijkstra. A.M. Turing Award Winner.
http://amturing.acm.org/award winners/dijkstra 1053701.cfm.

[7] E. W. Dijkstra. Archive: The Humble Programmer
(EWD 340). https://www.cs.utexas.edu/ EWD/tran-
scriptions/EWD03xx/EWD340.html.

[8] J. Filliâtre and A. Paskevich. Why3 - where programs
meet provers. In Proceedings of the 22nd European
Symposium on Programming Languages and Systems
(ESOP’13), volume 7792 of Lecture Notes in
Computer Science, pages 125–128. Springer, 2013.

[9] P. Fonseca, C. Li, V. Singhal, and R. Rodrigues. A
study of the internal and external effects of
concurrency bugs. In Proceedings of the International
Conference on Dependable Systems and Networks
(DSN’10), pages 221–230. IEEE Press, 2010.

[10] R. Garcia, E. Tanter, R. Wolff, and J. Aldrich.
Foundations of typestate-oriented programming.
Transactions on Programming Languages and
Systems, 36(4):1–44, 2014.

[11] E. F. Graversen, J. B. Harbo, H. Hüttel, M. O.
Bjerregaard, N. S. Poulsen, and S. A. Wahl. Type
inference for session types in the π-calculus. In Web
Services, Formal Methods, and Behavioral Types -
Revised selected papers of WS-FM’14 and
WS-FM/BEAT’15, volume 9421 of Lecture Notes in
Computer Science, pages 103–121. Springer, 2016.

[12] K. Honda. Types for dyadic interaction. In Proceedings
of the 4th International Conference on Concurrency
Theory (CONCUR’93), volume 715 of Lecture Notes
in Computer Science, pages 509–523. Springer, 1993.

[13] H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires,
M. Carbone, P.-M. Deniélou, D. Mostrous,
L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, and
G. Zavattaro. Foundations of session types and
behavioural contracts. ACM Computing Surveys,
49(1):1–36, 2016.

[14] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: A comprehensive study on real world
concurrency bug characteristics. In Proceedings of the
13th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS’08), pages 329–339. ACM, 2008.

[15] L. Padovani. Type Reconstruction for the Linear
π-Calculus with Composite Regular Types. Logical
Methods in Computer Science, 11:1–45, 2015.

[16] The Plaid Programming Language.
http://www.cs.cmu.edu/˜aldrich/plaid/.

[17] R. E. Strom and S. Yemini. Typestate: A
programming language concept for enhancing software
reliability. IEEE Transactions in Software
Engineering, 12(1):157–171, 1986.

[18] C. Vasconcelos and A. Ravara. A revision of the Mool
language. 2016.

