
Stage 1 - Typestate generation

Input example - File class

class F i l e {

i n t l i n e s I n F i l e ; i n t l inesRead ;
boolean closed ; boolean l i n e I n B u f f e r ; boolean eof ;

//@invariant linesRead >= 0 && linesRead <= linesInFile;
//@initial linesRead == 0 && linesInFile == 5

&& !closed && !lineInBuffer && !eof;
void F i l e () { . . . }

. . .
}

From OO Code with Assertions to Behavioural Types 1 / 17

Stage 1 - Typestate generation

Input example - File class

class F i l e {

. . .

//@requires linesRead < linesInFile && !closed && lineInBuffer
&& !eof;

//@ensures linesRead + 1 <= linesInFile
&& !closed && !lineInBuffer && !eof;

str ing read () { . . . }

. . .
}

From OO Code with Assertions to Behavioural Types 1 / 17

Stage 1 - Typestate generation

Input example - File class

class F i l e {

. . .

//@requires linesRead <= linesInFile && !closed && !lineInBuffer
&& !eof;

//@ensures (linesRead == linesInFile -> !lineInBuffer && eof)
&& !closed;

boolean eof () { . . . }

. . .
}

From OO Code with Assertions to Behavioural Types 1 / 17

Stage 1 - Typestate generation

Input example - File class

class F i l e {

. . .

//@requires linesRead == linesInFile && eof && !closed;
//@ensures linesRead == linesInFile && eof && closed;
void c lose () {

c losed = true ;
}

}

From OO Code with Assertions to Behavioural Types 1 / 17

Stage 1 - Typestate generation

Algorithm steps: initialisation

Starts by determining the initial state.

Determining a state consists on determining the set of
methods which the precondition is implied by the
constructor’s initial condition

From OO Code with Assertions to Behavioural Types 2 / 17

Stage 1 - Typestate generation

Algorithm steps: initialisation

Starts by determining the initial state.
Determining a state consists on determining the set of
methods which the precondition is implied by the
constructor’s initial condition

From OO Code with Assertions to Behavioural Types 2 / 17

Stage 1 - Typestate generation

Algorithm steps: initialisation

The initial state for the File class is:

S0 = {eof}

From OO Code with Assertions to Behavioural Types 3 / 17

Stage 1 - Typestate generation

Algorithm steps: initialisation

The initial state for the File class is:
S0 = {eof}

From OO Code with Assertions to Behavioural Types 3 / 17

Stage 1 - Typestate generation

Algorithm steps: iteration

From here, it explores the initial state and every state
thereafter

It manages a queue initialized with the initial state:
W = {{eof}}

From OO Code with Assertions to Behavioural Types 4 / 17

Stage 1 - Typestate generation

Algorithm steps: iteration

From here, it explores the initial state and every state
thereafter
It manages a queue initialized with the initial state:

W = {{eof}}

From OO Code with Assertions to Behavioural Types 4 / 17

Stage 1 - Typestate generation

Algorithm steps: iteration

From here, it explores the initial state and every state
thereafter
It manages a queue initialized with the initial state:

W = {{eof}}

From OO Code with Assertions to Behavioural Types 4 / 17

Stage 1 - Typestate generation

Algorithm steps: termination

While W is not empty, the algorithm takes the state in the
head of W , which will be the state to explore

W = {}
A = {eof}

Before exploring it, the state A will be added to the set of
states S, which is the set of states of the typestate

S = {{eof}}

From OO Code with Assertions to Behavioural Types 5 / 17

Stage 1 - Typestate generation

Algorithm steps: termination

While W is not empty, the algorithm takes the state in the
head of W , which will be the state to explore

W = {}
A = {eof}

Before exploring it, the state A will be added to the set of
states S, which is the set of states of the typestate

S = {{eof}}

From OO Code with Assertions to Behavioural Types 5 / 17

Stage 1 - Typestate generation

Algorithm steps: termination

While W is not empty, the algorithm takes the state in the
head of W , which will be the state to explore

W = {}
A = {eof}

Before exploring it, the state A will be added to the set of
states S, which is the set of states of the typestate

S = {{eof}}

From OO Code with Assertions to Behavioural Types 5 / 17

Stage 1 - Typestate generation

Algorithm steps: termination

While W is not empty, the algorithm takes the state in the
head of W , which will be the state to explore

W = {}
A = {eof}

Before exploring it, the state A will be added to the set of
states S, which is the set of states of the typestate

S = {{eof}}

From OO Code with Assertions to Behavioural Types 5 / 17

Stage 1 - Typestate generation

Algorithm steps

For each method m in state A, the algorithm will determine
the state the typestate transits to when m is executed.

Determining the next states is similar to determining the
initial state, only it uses the postcondition of m instead of the
initial condition

From OO Code with Assertions to Behavioural Types 6 / 17

Stage 1 - Typestate generation

Algorithm steps

For each method m in state A, the algorithm will determine
the state the typestate transits to when m is executed.
Determining the next states is similar to determining the
initial state, only it uses the postcondition of m instead of the
initial condition

From OO Code with Assertions to Behavioural Types 6 / 17

Stage 1 - Typestate generation

Algorithm steps

If m is of boolean type and its postcondition specifies two
states, two states are determined: One for the true result and
other for the false result
For example, the postcondition of method eof implies that:

If it returns true, there is no more lines to read. This state is valid for
the read method but not for the close method.
If it returns false, there is at least one more line to read. This state is
valid for the close method but not for the read method.

From OO Code with Assertions to Behavioural Types 7 / 17

Stage 1 - Typestate generation

Algorithm steps

This means that after eof there will be two possible states to
transit to depending of the returned value
Its execution causes the typestate to transit into a decision
state which will have two transitions, one for each possible
result of eof :

δ({eof}, eof) = {eof_choice}
δ({eof_choice}, true) = {close}
δ({eof_choice}, false) = {read}

From OO Code with Assertions to Behavioural Types 8 / 17

Stage 1 - Typestate generation

Algorithm steps

This means that after eof there will be two possible states to
transit to depending of the returned value
Its execution causes the typestate to transit into a decision
state which will have two transitions, one for each possible
result of eof :

δ({eof}, eof) = {eof_choice}
δ({eof_choice}, true) = {close}
δ({eof_choice}, false) = {read}

From OO Code with Assertions to Behavioural Types 8 / 17

Stage 1 - Typestate generation

Algorithm steps

States {read} and {close}, since they have not been
explored yet, are added to W .

From OO Code with Assertions to Behavioural Types 9 / 17

Stage 1 - Typestate generation

Algorithm steps

The algorithm does the same to every method in A

After fully exploring the state, the algorithm then explores the
state in the head of W and repeats the process until W is
empty

From OO Code with Assertions to Behavioural Types 10 / 17

Stage 1 - Typestate generation

Algorithm steps

The algorithm does the same to every method in A

After fully exploring the state, the algorithm then explores the
state in the head of W and repeats the process until W is
empty

From OO Code with Assertions to Behavioural Types 10 / 17

Stage 1 - Typestate generation
Output example - Typestate of the File class

{eof}start

{read}

{close} {}

eof

true

false

read

close

From OO Code with Assertions to Behavioural Types 11 / 17

Stage 2 - Usage generation

Algorithm steps: state id assignment

The second algorithm starts by creating a set of pairs
(stateid , state), with stateid being the identifier of state

For the File class this set will be:
{(0, {eof}), (1, {close})(2, {read})}

From OO Code with Assertions to Behavioural Types 12 / 17

Stage 2 - Usage generation

Algorithm steps: state id assignment

The second algorithm starts by creating a set of pairs
(stateid , state), with stateid being the identifier of state
For the File class this set will be:
{(0, {eof}), (1, {close})(2, {read})}

From OO Code with Assertions to Behavioural Types 12 / 17

Stage 2 - Usage generation

Algorithm steps: state shared status

The algorithm also determines the shared status of each
state
A state is considered shared if it only transits to itself or to an
equivalent state

From OO Code with Assertions to Behavioural Types 13 / 17

Stage 2 - Usage generation

Algorithm steps: state translation

Using the previous set and the transition relation of the
typestate, each state is then translated into an usage state

{(0, {eof}), (1, {close})(2, {read})}

δ({eof}, eof) = {eof_choice}

δ({eof_choice}, true) = {close}

δ({eof_choice}, false) = {read}

δ({close}, close) = {}

δ({read}, read) = {eof}

usage l i n { F i l e ; 0 } where

From OO Code with Assertions to Behavioural Types 14 / 17

Stage 2 - Usage generation

Algorithm steps: state translation

Using the previous set and the transition relation of the
typestate, each state is then translated into an usage state

{(0, {eof}), (1, {close})(2, {read})}

δ({eof}, eof) = {eof_choice}

δ({eof_choice}, true) = {close}

δ({eof_choice}, false) = {read}

δ({close}, close) = {}

δ({read}, read) = {eof}

usage l i n { F i l e ; 0 } where
0 = _ { eof ; _ }

From OO Code with Assertions to Behavioural Types 14 / 17

Stage 2 - Usage generation

Algorithm steps: state translation

Using the previous set and the transition relation of the
typestate, each state is then translated into an usage state

{(0, {eof}), (1, {close})(2, {read})}

δ({eof}, eof) = {eof_choice}

δ({eof_choice}, true) = {close}

δ({eof_choice}, false) = {read}

δ({close}, close) = {}

δ({read}, read) = {eof}

usage l i n { F i l e ; 0 } where
0 = _ { eof ; <_ + _>}

From OO Code with Assertions to Behavioural Types 14 / 17

Stage 2 - Usage generation

Algorithm steps: state translation

Using the previous set and the transition relation of the
typestate, each state is then translated into an usage state

{(0, {eof}), (1, {close}), (2, {read})}

δ({eof}, eof) = {eof_choice}

δ({eof_choice}, true) = {close}

δ({eof_choice}, false) = {read}

δ({close}, close) = {}

δ({read}, read) = {eof}

usage l i n { F i l e ; 0 } where
0 = l i n { eof ; <1 + 2 >}

From OO Code with Assertions to Behavioural Types 14 / 17

Stage 2 - Usage generation

Algorithm steps: state translation

Using the previous set and the transition relation of the
typestate, each state is then translated into an usage state

{(0, {eof}), (1, {close}), (2, {read})}

δ({eof}, eof) = {eof_choice}

δ({eof_choice}, true) = {close}

δ({eof_choice}, false) = {read}

δ({close}, close) = {}

δ({read}, read) = {eof}

usage l i n { F i l e ; 0 } where
0 = l i n { eof ; <1 + 2 >}
1 = _ { c lose ; _ }

From OO Code with Assertions to Behavioural Types 14 / 17

Stage 2 - Usage generation

Algorithm steps: state translation

Using the previous set and the transition relation of the
typestate, each state is then translated into an usage state

{(0, {eof}), (1, {close}), (2, {read})}

δ({eof}, eof) = {eof_choice}

δ({eof_choice}, true) = {close}

δ({eof_choice}, false) = {read}

δ({close}, close) = {}

δ({read}, read) = {eof}

usage l i n { F i l e ; 0 } where
0 = l i n { eof ; <1 + 2 >}
1 = l i n { c lose ; end }

From OO Code with Assertions to Behavioural Types 14 / 17

Stage 2 - Usage generation

Algorithm steps: state translation

Using the previous set and the transition relation of the
typestate, each state is then translated into an usage state

{(0, {eof}), (1, {close}), (2, {read})}

δ({eof}, eof) = {eof_choice}

δ({eof_choice}, true) = {close}

δ({eof_choice}, false) = {read}

δ({close}, close) = {}

δ({read}, read) = {eof}

usage l i n { F i l e ; 0 } where
0 = l i n { eof ; <1 + 2 >}
1 = l i n { c lose ; end }
2 = _ { read ; _ }

From OO Code with Assertions to Behavioural Types 14 / 17

Stage 2 - Usage generation

Algorithm steps: state translation

Using the previous set and the transition relation of the
typestate, each state is then translated into an usage state

{(0, {eof}), (1, {close}), (2, {read})}

δ({eof}, eof) = {eof_choice}

δ({eof_choice}, true) = {close}

δ({eof_choice}, false) = {read}

δ({close}, close) = {}

δ({read}, read) = {eof}

usage l i n { F i l e ; 0 } where
0 = l i n { eof ; <1 + 2 >}
1 = l i n { c lose ; end }
2 = l i n { read ; 0 }

From OO Code with Assertions to Behavioural Types 14 / 17

Stage 2 - Usage generation

Output example - Usage of the File class

usage l i n { F i l e ; Q1 } where
0 = l i n { eof ; <1 + 2 >}
1 = l i n { c lose ; end }
2 = l i n { read ; 0 }

From OO Code with Assertions to Behavioural Types 15 / 17

Stage 3 - Object usage state inference

Algorithm steps - overview

Goes through all the methods of each class (following the
order of the usage) and, for each one:

1 Determines the usage state of every parameter using the
precondition of the method

2 Determines the usage state of the return type using the
postcondition of the method

3 Analyses the code of the method and:
For every initialization, sets the usage state of the initialized variable with
the usage state of the value
For every call, changes the current usage state of the object the method
was called

From OO Code with Assertions to Behavioural Types 16 / 17

Stage 3 - Object usage state inference

Algorithm steps - overview

Goes through all the methods of each class (following the
order of the usage) and, for each one:

1 Determines the usage state of every parameter using the
precondition of the method

2 Determines the usage state of the return type using the
postcondition of the method

3 Analyses the code of the method and:
For every initialization, sets the usage state of the initialized variable with
the usage state of the value
For every call, changes the current usage state of the object the method
was called

From OO Code with Assertions to Behavioural Types 16 / 17

Stage 3 - Object usage state inference

Algorithm steps - overview

Goes through all the methods of each class (following the
order of the usage) and, for each one:

1 Determines the usage state of every parameter using the
precondition of the method

2 Determines the usage state of the return type using the
postcondition of the method

3 Analyses the code of the method and:
For every initialization, sets the usage state of the initialized variable with
the usage state of the value
For every call, changes the current usage state of the object the method
was called

From OO Code with Assertions to Behavioural Types 16 / 17

Stage 3 - Object usage state inference

Algorithm steps - overview

Goes through all the methods of each class (following the
order of the usage) and, for each one:

1 Determines the usage state of every parameter using the
precondition of the method

2 Determines the usage state of the return type using the
postcondition of the method

3 Analyses the code of the method and:

For every initialization, sets the usage state of the initialized variable with
the usage state of the value
For every call, changes the current usage state of the object the method
was called

From OO Code with Assertions to Behavioural Types 16 / 17

Stage 3 - Object usage state inference

Algorithm steps - overview

Goes through all the methods of each class (following the
order of the usage) and, for each one:

1 Determines the usage state of every parameter using the
precondition of the method

2 Determines the usage state of the return type using the
postcondition of the method

3 Analyses the code of the method and:
For every initialization, sets the usage state of the initialized variable with
the usage state of the value

For every call, changes the current usage state of the object the method
was called

From OO Code with Assertions to Behavioural Types 16 / 17

Stage 3 - Object usage state inference

Algorithm steps - overview

Goes through all the methods of each class (following the
order of the usage) and, for each one:

1 Determines the usage state of every parameter using the
precondition of the method

2 Determines the usage state of the return type using the
postcondition of the method

3 Analyses the code of the method and:
For every initialization, sets the usage state of the initialized variable with
the usage state of the value
For every call, changes the current usage state of the object the method
was called

From OO Code with Assertions to Behavioural Types 16 / 17

Stage 3 - Object usage state inference

Algorithm steps - determining the usage state of an object

When determining the usage state of an object, the algorithm
checks the first usage state that has a set of method whose
preconditions are implied by the assertions that specifies its
state

From OO Code with Assertions to Behavioural Types 17 / 17

